Изготовление своими руками

Можно изготовить термоэлектрический генератор своими руками. Для этой цели потребуются некоторые элементы:

  • Модуль, способный выдерживать нагрев до 300−400 °C.
  • Повышающий преобразователь, цель которого заключается в приеме беспрерывного напряжения 5 В.
  • Нагреватель в виде костра, свечки или какой-либо миниатюрной печи.
  • Охладитель. Вода или снег — наиболее популярные подручные варианты.
  • Соединительные элементы. Для этой цели можно использовать кружки или кастрюли разного размера.

Провода, проходящие между преобразователем и модулем, необходимо изолировать термостойким составом или обычным герметиком. Собирать устройство необходимо в такой последовательности:

  1. От блока питания оставить только корпус.
  2. Холодной стороной к радиатору нужно приклеить модуль «Пельтье».
  3. Предварительно зачистив и отполировав поверхность, нужно приклеить элемент другой стороной.
  4. От входа преобразователя напряжения необходимо припаять провода к выходам пластины.

При этом термогенератор для корректной работы должен быть наделен такими характеристиками: выходное напряжение — 5 вольт, тип выхода для подключения устройства — USB (или любой другой в зависимости от предпочтений), минимальная мощность нагрузки должна составлять 0,5 А. При этом можно использовать любой вид топлива.

Проверить механизм достаточно просто. Внутрь можно положить несколько сухих и тонких веточек. Поджечь их, а через несколько минут подключить какое-либо устройство, например, телефон для подзарядки. Собрать термогенератор несложно. Если все сделать правильно, то он прослужит не один год в поездках и походах.

Устройство и принцип работы

Принцип работы термоэлектрического генератора, или, как его еще называют, теплового насоса, основывается на преобразовании энергии тепла в электрическую энергию с использованием термических элементов полупроводников, которые связываются между собой параллельно или последовательно.

В ходе проведения исследований немецким ученым был создан совершенно новый эффект Пелтье, в котором указывается, что абсолютно разные материалы полупроводников при проведении спаивания дают возможность обнаружить отличие температур между их боковыми точками.

Но как же понять, как работает данная система? Все довольно-таки просто, такая концепция основана на определенном алгоритме: когда один из элементов охлаждают, а другой нагревают, то мы получаем энергию силы тока и напряжения. Главная особенность, которая выделяет из остальных именно этот метод, заключается в том, что тут могут использоваться всевозможные источники тепла, среди которых недавно отключенная плита, лампа, костер или даже чашка с только налитым чаем. Ну а охлаждающим элементом чаще всего является воздух или же обычная вода.

Как же устроены эти термические генераторы? Они состоят из специальных термических батареек, которые изготавливают из материалов проводников, и тепловых обменников разнородных температур спаев термобатарей.

Схема электрической цепи выглядит следующим образом: термоэлементы полупроводников, ветви прямоугольной формы n- и p-типа проводимой способности, соединенные пластины холодных и горячих сплавов, а также высокая нагрузка.

Среди положительных сторон термоэлектрического модуля отмечают возможность использовать абсолютно во всех условиях, в том числе и в походах, да и к тому же легкость транспортировки. Более того, в них отсутствуют подвижные детали, которые имеют свойство быстро изнашиваться.

А к недостаткам относят далеко не низкую стоимость, низкий коэффициент полезного действия (приблизительно 2–3%), а также важность еще одного источника, который обеспечит рациональный перепад температур

Следует отметить, что ученые активно работают над перспективами усовершенствования и устранения всех погрешностей в получении энергии таким способом. Продолжаются эксперименты и исследования по разработке наиболее эффективных термических батареек, которые помогут повысить значение коэффициента полезного действия.

Однако довольно сложно определить оптимальность этих вариантов, так как они базируются исключительно на практических показателях, не имея при этом теоретического обоснования.

Существует теория, что на современном этапе физиками будет использоваться технологически новый метод замены сплавов на более эффективные, в отдельности с внедрением нанотехнологий. Более того, возможен вариант использования нетрадиционных исходников. Так, в университете Калифорнии был проведен эксперимент, где термические батарейки заменили синтезированной искусственной молекулой, которая выступала как связующий материал золотых микроскопических полупроводников. Согласно проведенным опытам стало ясно, что результативность нынешних исследований покажет лишь время.

XX век

В XX веке большая часть термоэлектрических генераторов снабжалась патентом, а топливом стал газ. Особенностью периода считаются попытки теоретически объяснить наблюдаемое явление. Первым рассчитал КПД термоэлектрических генераторов Рэйли, хотя результат оказался ошибочным. В 1909 и 1911 годах предпринимались попытки дать теоретические исследования материалов: Альтенкирх показал, что термоэлектрические материалы должны обладать большим коэффициентом Зеебека и малым омическим сопротивлением контакта для сокращения потерь на тепло.

Забавно, но используемые сегодня для создания мощных приборов полупроводники остались за пределами интересов Зеебека, целиком сосредоточившего внимание на чистых металлах и сплавах. В перечисленных материалах, согласно закону Видеманна-Франца-Лоренца, отношение тепловой проводимости к электрической признано константой

Подходящими металлами для термопар признаются металлы, где коэффициент Зеебека максимальный.

Значительные сдвиги в отрасли пришлись на период синтеза в 30-е году полупроводников со значениями коэффициента Зеебека, превышающими 100 мкВ/К. В результате после Второй мировой войны (1947 год) на сцене появился генератор М. Телкеса с КПД в 5%. Через пару лет Абрам Федорович Иоффе разработал теорию полупроводниковых термоэлементов. К сожалению, интересы великих держав расходились, не сразу осознали, что полупроводники таят большой потенциал. В 1956 году Иоффе с сотрудниками показали, что слишком большое отношение термической и электрической проводимости уменьшается сплавлением материалов с различными компаундами. Из-за большого военного значения многие разработки остались в тайне, к примеру, исследования RCA.

В начале 60-х из космоса термоэлектричество потихоньку спустилось на Землю. Преимущественными сферами стали медицина и исследования поверхности планеты (включая полезные ископаемые). Ключевыми достоинствами новой технологии стали простота, надёжность, отсутствие движущихся частей, бесшумность, а недостатками – немалая цена и низкая эффективность (прежние 5%). Примерный расчёт целесообразности применения новых материалов:

  1. В присутствии воздуха полагается задуматься об углеводородных ресурсах.
  2. На движущихся объектах в первую очередь экономят место. При этом энергетическая плотность жидкого топлива в 50 раз выше свинцовых аккумуляторов или батареек.
  3. Следовательно, при эффективности термоэлектрических полупроводников выше 2% их применение становится оправданным. А нефть потихоньку выгорает, снижая общую массу объекта.

В отдельных случаях подогрев термоэлектрического генератора удаётся вести радиоактивными изотопами, открывая новые горизонты. Подобный источник использовался на Вояжере (1977 год) и проработал свыше 17 лет

С удорожанием нефти (кризис 1973 года) правительство США обратило внимание на новые источники энергии: отходы сливных вод мощных предприятий, содержащие огромные потенциальные возможности. В ходе исследований затрагивались интереснейшие вещи: сверхпроводимость полупроводников при относительно высоких температурах (150 – 170 К) для улучшения свойств термопар

Потом усилия сосредоточились на доведении до кондиции элементной базы из германия и кремния.

Открытые сегодня термоэлектрические материалы делятся условно на три группы по рабочей температуре:

  1. Теллурид висмута и сплавы демонстрируют наилучшие показатели качества в области 450 К.
  2. Теллуриды свинца и сплавы обнаруживают пониженные показатели, но работают при температурах 1000 – 1300 К.
  3. Наконец, композиции кремния и германия обладают низкой эффективностью, но хорошо отработанной технологией изготовления. Работают при температурах 1000 – 1300 К.

Концепция теплового насоса

Базовая идея теплового насоса заключается в извлечении некоторой полезной энергии из полученной разницы температур. Выходная энергия может быть механической, электрической или другой. Одним из явных примеров, который часто встречается в той же бытовой практике, выступает паровой двигатель. В данном случае нагревается вода с целью получения пара. В свою очередь пар, обладая свойством расширения, создаёт давление.

Классическая схема теплового насоса, применяемого на практике: 1 – холодный цилиндр; 2 – радиатор; 3 – маховик; 4 – источник тепла; 5 – горячий цилиндр; 6 – пар (газ); 7 – контур прохождения пара (газа)

Полученное давление используется для выполнения какой-то работы. Например, для толкания поршня в цилиндре механического привода. Выполняя работу, пар охлаждается, сжимается, конденсируется. Поэтому, чтобы паровая машина работала, необходима внешняя температура ниже температуры пара. Фактически, работа всех тепловых насосов зависит от разницы температур.

Как создавались термогенераторы

Уже в середине 19 века делались многочисленные попытки для создания термогенераторов – устройств для получения электрической энергии, то есть для питания различных потребителей. В качестве таких источников предполагалось использовать батареи из последовательно соединенных термоэлементов. Конструкция такой батареи показана на рис. 2.

   Рис. 2. Термобатарея, схематическое устройство

Первую термоэлектрическую батарею создали в середине 19 века физики Эрстед и Фурье. В качестве термоэлектродов использовались висмут и сурьма, как раз та самая пара из чистых металлов, у которой максимальная термоэдс. Горячие спаи нагревались газовыми горелками, а холодные помещались в сосуд со льдом. В процессе опытов с термоэлектричеством позднее были изобретены термобатареи, пригодные для использования в некоторых технологических процессах и даже для освещения. В качестве примера можно привести батарею Кламона, разработанную в 1874 году, мощности которой вполне хватало для практических целей: например для гальванического золочения, а также применения в типографии и мастерских гелиогравюры. Примерно в то же время исследованием термобатарей занимался и ученый Ноэ, его термобатареи в свое время также были распространены достаточно широко.

Но все эти опыты, хотя и удачные, были обречены на провал, поскольку термобатареи, созданные на основе термоэлементов из чистых металлов, имели весьма низкий КПД, что сдерживало их практическое применение. Чисто металлические пары имеют КПД лишь несколько десятых долей процента. Намного большим КПД обладают полупроводниковые материалы: некоторые окислы, сульфиды и интерметаллические соединения.

Полупроводниковые материалы для прямого преобразования энергии

Для термоэлектрогенераторов используются полупроводниковые термоэлектрические материалы, обеспечивающие наиболее высокий коэффициент преобразования тепла в электричество. Список веществ, имеющих термоэлектрические свойства, достаточно велик (тысячи сплавов и соединений), но лишь немногие из них могут использоваться для преобразования тепловой энергии. Современная наука постоянно изыскивает новые и новые полупроводниковые композиции и прогресс в этой области обеспечивается не столько теорией, сколько практикой, ввиду сложности физических процессов, происходящих в термоэлектрических материалах. Определённо можно сказать, что на сегодняшний день не существует термоэлектрического материала, в полной мере удовлетворяющего промышленность своими свойствами, и главным инструментом в создании такого материала является эксперимент. Важнейшими свойствами полупроводникового материала для термоэлектрогенераторов являются:

  • КПД: Желателен как можно более высокий КПД;
  • Технологичность: Возможность любых видов обработки;
  • Стоимость: Желательно отсутствие в составе редких элементов или их меньшее количество, достаточная сырьевая база (для расширения сфер ассимиляции и доступности);
  • Коэффициент термо-ЭДС: Желателен как можно более высокий коэффициент термо-ЭДС (для упрощения конструкции);
  • Токсичность: Желательно отсутствие или малое содержание токсичных элементов (например: свинец, висмут, теллур, селен) или их инертное состояние (в составе сплавов);
  • Рабочие температуры: Желателен как можно более широкий температурный диапазон для использования высокопотенциального тепла и, следовательно, увеличения преобразуемой тепловой мощности.

Работа модуля

Термогенераторы электричества работают по определенному принципу. Так, в зависимости от направления тока, в контакте разнопроводных проводников наблюдается поглощение или выделение тепла. Это зависит от направления электричества. При этом плотность тока является одинаковой, а энергии — различной.

Разогревание кристаллической решетки наблюдается, если вытекающая энергия меньше той, что входит в контакт. При перемене направленности тока происходит обратный процесс. Энергия в кристаллической решетке снижается, поэтому происходит охлаждение устройства.

Наибольшей популярностью пользуется термоэлектрический модуль, состоящий из проводников типов р и n, которые между собой соединены через медные аналоги. В каждом из элементов существует по 4 перехода, которые охлаждаются и нагреваются. Из-за температурного перепада возможно создание термоэлектрогенератора.

Сферы применения

Из-за низкого коэффициента полезного действия термоэлектрические генераторы широко используются там, где отсутствуют какие-либо другие варианты источников энергии, а также во время процессов со значительной нехваткой тепла.

Дровяные печи с электрогенератором

Данное устройство характеризуется наличием эмалированной поверхности, источника электроэнергии, в том числе и обогревателя. Мощности такого приспособления может хватить для того, чтобы зарядить мобильное устройство или же другие девайсы с помощью гнезда прикуривателей для автомобилей. Исходя из параметров, можно сделать вывод, что генератор способен работать без обычных условий, а именно, без наличия газа, отопительной системы и электричества.

Термоэлектрические генераторы промышленного производства

Фирмой BioLite была представлена новая модель для походов – портативная печка, которая позволит не только разогреть еду, но и зарядить ваше мобильное устройство. Все это возможно благодаря встроенному в это приспособление термоэлектрическому генератору.

Радиоизотопные термоэлектрические генераторы

В них источником энергии выступает тепло, которое образуется в результате расщепления микроэлементов. Они нуждаются в постоянном снабжении топливом, поэтому имеют превосходство над другими генераторами. Однако их существенный недостаток заключается в том, что при работе необходимо соблюдать правила безопасности, так как имеет место излучение ионизированными материалами.

Несмотря на то что запуск таких генераторов может быть опасен, в том числе и для экологической ситуации, их использование довольно распространено. Например, их утилизация возможна не только на Земле, но и в космосе. Известно, что радиоизотопные генераторы применяются для заряда навигационных систем, чаще всего в местах, где отсутствуют системы связи.

Термические микроэлементы

Термобатарейки выступают как преобразователи, а также их конструкцию составляют электроизмерительные приборы, калиброванные в Цельсиях. Погрешность в таких приборах обычно приравнивается к 0,01 градусам. Но необходимо отметить, что данные устройства разработаны для использования в диапазоне от минимальной черты абсолютного нуля и до 2000 градусов по Цельсию.

В связи с развитием научно-технического прогресса, а также углубленными исследованиями в физике получает популярность применение термоэлектрических генераторов в транспортных средствах для восстановления энергии тепла, чтобы переработать вещества, которые извлекают из вытяжных систем автомобилей.

В следующем видео представлен обзор современного термогенератора электричества для похода BioLite energy everywhere.

Термоэлектрический генератор

Огромное количество электронных устройств поглощает электрическую энергию, которую надо постоянно возобновлять. Находясь в пути, приходится возить с собой химические источники тока или вырабатывать электричество из механической энергии с помощью сложных и громоздких приспособлений.

Вид термоэлектрического генератора

Ещё раньше Зеебек обнаружил возникновение термо-ЭДС в цепи из разнородных проводников при поддерживании разной температуры в месте контакта. На основании термоэлектрических эффектов был создан так называемый элемент или модуль «Пельтье», представляющий собой 2 керамические пластины с расположенным между ними биметаллом. При подаче через них электрического тока, одна сторона пластины нагревается, а другая охлаждается, что позволяет создавать из них холодильники. На рисунке ниже изображены модули разных размеров, применяемые в технике.

Модули «Пельтье» разных размеров

Процесс является обратимым: если поддерживать температурный перепад на элементах с обеих сторон, в них будет вырабатываться электрический ток, что позволяет использовать устройство как термоэлектрический генератор для выработки небольшого количества электроэнергии.

Эффект «Пельтье» заключается в выделении тепла в месте контакта разнородных проводников при протекании по ним электрического тока.

Перспективы

В данное время продолжают ставить опыты, подбирая оптимальные термопары, позволяющие повысить коэффициент полезного действия.

Большая вероятность того, что скоро разработки усовершенствования доброкачественности термических элементов, обретут высший статус производства материала для повышения взаимодействия термопар, с применением высоких технологий:

  • нанотехнологий;
  • ям квантования и т.п.

Вполне возможен вариант изобретения совсем другого принципа, с применением нестандартных материалов.

Были попытки соединения микроскопических проводников из золота искусственно синтезированной молекулой. Этот опыт в дальнейшем вполне может добиться успеха.

Принцип работы

В девятнадцатом веке одним ученым обнаружилось возникновение электродвижущей силы в замкнутой цепи, при изменениях температуры в среде контактировании сурьмы с проводником.

Нагревая один из контактов, возникает магнитное поле, что вызывает ЭДС. При нагревании второго контакта, поток ЭДС противоположно изменяется.

Спустя двенадцать 12 лет другой физик выявил противоположный эффект. Пропустив ток по цепи термопары, в контактах создается перепады температур.

В принципе эти оба эффекта разные стороны одного и того же явления, дающего возможность непосредственно получить электричество из тепла.

Что это такое?

Термоэлектрический генератор – это приспособление, задача которого заключается в превращении тепловой энергии в электричество путем применения системы термических элементов.

Понятие «тепловая» энергия в данном контексте трактуется не совсем верно, так как тепло означает лишь метод превращения данной энергии.

ТЭГ представляет собой термоэлектрическое явление, которое впервые было проиллюстрировано немецким физиком Томасом Зеебеком в 20-ых годах 19 столетия. Результат исследования Зеебека трактуется как электрическое сопротивление в цепи из двух отличающихся материалов, однако весь процесс протекает лишь в зависимости от температуры.

Развитие концепции термоэлектричества

Когда стало понятно, что тепло не способно непосредственно превращаться в магнетизм, наконец, отвергли идею образования полей Земного шара жаром извергающихся вулканов и кипящей внутри магмой. Сопоставив опыты Эрстеда и Зеебека, научное сообщество нашло правильный путь. За Георгом Омом термопару в качестве термоэлектрического генератора стали использовать в электролизе (1831 год). Но термин пребывал неустойчивым. Считается, что первые термоэлектрические генераторы появились во второй половине XIX века. Считались просто лабораторными установками для исследований различных процессов, именовались по-иному.

В Почтово-Телеграфном журнале ближе к 1899 году опубликована заметка о создании батареи для питания лампочек мощность 16 кандел. В топку печи помещались термопары, с достаточными напряжением и током. Объединяя питающие элементы последовательно, поднимали вольтаж. А при параллельном включении увеличивался ток. Каждая термопара сконструирована по образу использованной Зеебеком (сурьма – антимонид цинка). Тогда уже узнали батарею Гюльхера (предположительно, 1898 год).

Так в научных кругах последовательно соединённые термопары окрестили термобатареей. Считается, что первыми прибор создали Эрстед и Фурье в 1823 году. Они объединили термопары Зеебека для получения мощного источника питания. Дальнейшее развитие концепция получила с подачи Леопольдо Нобили и Македонио Меллони: для серии опытов по исследованию инфракрасного спектра они создали тепловой мультипликатор. Идея пришла обоим после внесения прогрессивных изменений в конструкцию Швейггера (1825 год).

Задумка первого гальванометра: эффект витков проволоки перемножается по их количеству. Аналогичным образом собирался «усилитель тепла» из термопар. Прибор предназначался целиком для исследования инфракрасного спектра за счёт измерения производимого нагрева, но впоследствии концепция послужила основой для создания новых источников питания. Индикатором термоумножителя стала стрелка компаса.

История изобретения термоэлектрогенераторов

В году немецкий физик Томас Иоганн Зеебек обнаружил, что температурный градиент, образованный между двумя разнородными проводниками, может производить электричество. В году он опубликовал результаты своих опытов в статье «К вопросу о магнитной поляризации некоторых металлов и руд, возникающей в условиях разности температур», опубликованной в докладах Прусской академии наук. В основе термоэлектрического эффекта Зеебека лежит тот факт, что температурный градиент в токопроводящем материале вызывает тепловой поток; это приводит к переносу носителей заряда. Поток носителей заряда между горячими и холодными областями, в свою очередь, создает разность потенциалов.

В году Жан-Шарль Пельтье обнаружил обратный эффект, при котором происходит выделение или поглощение тепла при прохождении электрического тока через контакт двух разнородных проводников.

Самодельный термогенератор с нагревом с помощью пара

Этим вопросом я задался, когда готовился пойти в поход на байдарках на две недели. Электроэнергия требовалась, прежде всего, для восполнения заряда аккумуляторов в фотоаппаратах, а также аккумуляторов в фонарях.

Дамы и Господа, знакома ли Вам такая замечательная вещь, как термоэлектрические модули Пельтье? Это достаточно распространенные в наше время устройства, широко используемые любителями компьютерного «разгона» для экстремального охлаждения деталей своих компьютеров.

Суть идеи заключается в том, что это по форме плоский полупроводниковый прибор, имеющий два провода «+» и «-«, а также две поверхности – «горячую» и «холодную». Если пропускать через него постоянный ток, то «холодная» сторона будет охлаждаться, а «горячая» нагреваться – прибор работает как тепловой насос. По паспорту, разность температур может достигать 60 градусов. Это значит, что например, если «горячую» сторону охлаждать до температуры 20 градусов (комнатная температура), то «холодная» сторона остынет до минус 40 градусов. Если поменять местами «+» и «-«, «горячая» и «холодная» стороны также меняются местами и тепловой поток меняет направление.

Но оказывается, у этих модулей имеется еще одна интересная особенность: если приложить к ним разность температур, то они начинают давать электрический ток! Именно на этом эффекте и предполагалось создать портативный источник электроэнергии для похода.

Так как в походе обязательно есть костер и кипящая вода, предполагалось в качестве «горячего» источника тепла использовать пар, а в качестве «холодного» – холодную воду.

Итак, пар по трубкам (в одну входит, из другой выходит)попадает в специальный теплообменник, изготовленный из алюминиевой пластины толщиной 10ммВсе отверстия в этом теплообменнике соединяются только одним каналом, а в сборе с трубками, которые ввернуты и вклеены в него с помощью эпоксидного компаунда, это выглядит так:Теплообменник имеет размеры в точности по размеру модулей Пельтье. Модули прижимаются к теплообменнику с двух сторон четырьмя винтами (изначально винтов предполагалось восемь, но в результате моей недальновидности и конструкторской бездарности двум из них помешали паровые трубки, а другие два с противоположной стороны решено было не устанавливать, чтобы избежать перекоса),поэтому отверстия в теплообменнике и канальцы между ними образуют систему сообщающихся паровых камер. Войдя в одну трубку, пар проходит по единственно возможному пути последовательно через каждую паровую камеру, образованную объемами отверстий в теплообменнике, и выходит через вторую трубку. Тепло от пара передается модулю при непосредственном контакте с его поверхностью (на площади, равной суммарной площади отверстий в теплообменнике) и через материал теплообменника.Для прижатия модулей Пельтье к теплообменнику и для отвода тепла к «холодному» источнику тепла используются алюминиевые пластины толщиной 5ммДля предотвращения попадания охлаждающей воды внутрь модулей Пельтье, вся сборка герметизирована полупрозрачным силиконовым затекающим герметикомТеперь осталось только пустить пар по трубкам, а саму сборку опустить в емкость с холодной водой. Однако, в результате экспериментов на кухонной плите выяснилось, что напряжения, которое выдает эта система, недостаточно для полноценного заряда аккумуляторов. «Холодная» вода в охлаждающей емкости быстро нагревается, разница температур уменьшается и напряжение еще более снижается. Кроме того, для полноценной зарядки аккумуляторов требуется достаточно продолжительное время, исчисляемое часами (от слова «час», а не «часы»), как показала практика, в походных условиях при дождливой погоде не всегда удается развести хороший огонь и вскипятить воду, не говоря уже о паропроизводстве в течение нескольких часов.Поэтому данная система так и осталась не задействована, а вместо нее была собрана другая – на солнечных батареях. В ее состав входит сборка солнечных элементов, которую можно свернуть в «трубочку»и блок-стабилизатор для обеспечения необходимого напряжения для заряда Li-ION аккумулятораКак затем показала практика эксплуатации – это решение вполне пригодно для исполнения своих функций.

Изготовление электрогенератора на дровах своими руками

Основа прибора – элемент Пельтье. Его можно специально купить или извлечь из компьютера (он находится между процессором и радиатором).

Кроме него, для работы агрегата понадобится:

  • стабилизатор напряжения, он же модуль с USB выходом;
  • металл для корпуса (можно использовать корпус от старого блока питания);
  • радиатор охлаждения и кулер;
  • термопаста;
  • инструмент – заклёпочник, ножницы по металлу, дрель;
  • паяльник;
  • клёпки.

Для начала изготавливается корпус щепочницы (на которой можно с помощью мелкого хвороста вскипятить в кастрюльке воду).

Это квадратная банка без дна, снизу имеет отверстия для воздуха, сверху подставка для емкости (хотя это не обязательно, генератор будет работать и без воды).

На корпус сбоку крепится элемент Пельтье, а к его холодной стороне, через термопасту – радиатор охлаждения

Важно, чтобы контакт между деталями был как можно плотнее. Получается основа печи-генератора

Радиатор должен как можно лучше охлаждать систему, поскольку наибольшая эффективность достигается при большой разнице температур. Зимой проблем не будет, поскольку аппарат можно поставить в снег. Но в тёплое время года радиатор будет постепенно нагреваться, поэтому для его охлаждения устанавливается кулер.

Дальше электрическая часть. Хорошо если удалось найти стабилизатор напряжения в одном корпусе с USB гнездом – это будет удобно.

Стабилизатор нужен для того чтобы на выходе всегда было заданное напряжение, независимо от того, сколько выдает генерирующий элемент.

Можно приобрести готовый с диодным индикатором, который загорается, когда напряжение достигает заданной величины.

Спаивается стабилизатор и Пельтье, согласно полюсам. Стабилизатор тщательно изолируется, чтобы не попадала никакая влага.

Конструкция готова, можно проводить испытания.

Обзор типов

В зависимости от методов получения электроэнергии, источников тепла, а также от разновидностей задействованных структурных элементов все термоэлектрические генераторы бывают на нескольких видов.

Топливные. Получают тепло от сжигания топлива, который представляет собой уголь, природный газ и нефть, а также тепло, полученное путем сгорания пиротехнических групп (шашек).

Атомные термоэлектрические генераторы, в которых источником выступает тепло атомного реактора (уран-233, уран-235, плутоний-238, торий), зачастую здесь термический насос — вторая и третья ступени превращения.

Солнечные генераторы формируют тепло от солнечных коммуникаторов, которые известны нам в повседневной жизни (зеркала, линзы, тепловые трубы).

Утилизационные генерируют тепло из всевозможных источников, в результате чего выделяется отходное тепло (выбросные и топочные газы и прочее).

Радиоизотопные получают тепло путем распада и расщепления изотопов, данный процесс характеризуется неконтролируемостью самого расщепления, и результатом выступает момент полураспада элементов.

Градиентные термоэлектрические генераторы базируются на перепаде температур без каких-либо вмешательств извне: между окружающей средой и местом проведения эксперимента (специально оснащенным оборудованием, промышленным трубопроводом и т. д.) с использованием исходного отправного тока. Приведенный тип теплоэлектрического генератора был использован с утилизацией полученной электрической энергии от эффекта Зеебека для превращения в тепловую энергию согласно закону Джоуля-Ленца.

Плюсы данного генератора

Здесь нет трущихся между собой деталей, которые могли бы выйти из строя. Поэтому, генератор на дровах:

  • долговечен и надёжен;
  • работает бесшумно;
  • использует доступное топливо;
  • лёгкий, переносной – может быть до 1 кг.

Печь-генератор – это ноу-хау последних лет. Она будет интересна как экспериментаторам – любителям, так и путешественникам, поклонникам походов и рыбалки. Да и кому не хотелось бы иметь доступ к электричеству во время отключения света.

Для самодельной печи все детали можно купить весьма недорого – в пределах 500 руб. (Через интернет китайские элементы Пельтье можно заказать примерно за 300 руб.)