Как измерить сопротивление заземления с помощью мультиметра и мегаомметра

«Диагностика» контура делается довольно часто. Измерение величины заземления проводится как при его обустройстве (последний, заключительный этап работы), так и в плане контроля состояния уже имеющегося.

Например, для проверки целостности стержня, оценки возможности использования контура без его реконструкции при значительном увеличении нагрузки на домашнюю электросеть, и в ряде других случаев

И уж тем более определение номинала сопротивления важно, если в цепи эл/питания нет защитных устройств (АВ, УЗО или дифференциального автомата)

Дело в том, что все перечисленные приборы для проведения официальных измерений не подходят. Для этого необходима специальная тестирующая аппаратура. Для «домашнего» же контроля состояния заземления можно использовать любой из образцов, который есть под рукой. Хотя результат будет лишь приблизительным, и это следует учитывать.

Глина, суглинок, супесь (различия)

Рыхлые осадочные грунты, состоящие из глины и песка, классифицируются по содержанию в них глинистых частиц:

глина — более 30%. Глина очень пластичная, хорошо скатывается в шнур (между ладонями). Скатанный из глины шар сдавливается в лепешку без образования трещин по краям.

  • тяжелая — более 60%
  • обычная — от 30 до 60% с преобладанием глинистых частиц
  • пылеватая — от 30 до 60% с преобладанием песка

суглинок — от 10% до 30% глины. Этот грунт достаточно пластичен, при растирании его между пальцами не чувствуются отдельные песчинки. Скатанный из суглинка шар раздавливается в лепешку с образованием трещин по краям.

тяжелый — от 20 до 30%
средний — от 15 до 20%
легкий — от 10 до 15%

супесь (супесок) — менее 10% глины. Является переходной формой от глинистых к песчаным грунтам. Супесь наименее пластичная из всех глинистых грунтов; при ее растирании между пальцами чувствуются песчинки; она плохо скатывается в шнур. Скатанный из супеси шар рассыпается при сдавливании.

Величины расчетного электрического удельного сопротивления грунта (таблица)

Грунт

Удельное сопротивление, среднее значение (Ом*м) Сопротивление заземления для комплектаZZ-000-015, Ом Сопротивление заземления для комплектаZZ-000-030, Ом Сопротивление заземления для комплектаZZ-100-102, Ом
Асфальт 200 — 3 200 17 — 277 9,4 — 151 8,3 — 132
Базальт 2 000 Требуются специальные мероприятия (замена грунта)
Бентонит (сорт глины) 2 — 10 0,17 — 0,87 0,09 — 0,47 0,08 — 0,41
Бетон 40 — 1 000 3,5 — 87 2 — 47 1,5 — 41
Вода    
Вода морская 0,2
Вода прудовая 40 3,5 2 1,7
Вода равнинной реки 50 4 2,5 2
Вода грунтовая 20 — 60 1,7 — 5 1 — 3 1 — 2,5
Вечномёрзлый грунт (многолетнемёрзлый грунт)    
Вечномёрзлый грунт — талый слой (у поверхности летом) 500 — 1000 20 — 41
Вечномёрзлый грунт (суглинок) 20 000 Требуются специальные мероприятия (замена грунта)
Вечномёрзлый грунт (песок) 50 000 Требуются специальные мероприятия (замена грунта)
Глина    
Глина влажная 20 1,7 1 0,8
Глина полутвёрдая 60 5 3 2,5
Гнейс разложившийся 275 24 12 11,5
Гравий    
Гравий глинистый, неоднородный 300 26 14 12,5
Гравий однородный 800 69 38 33
Гранит 1 100 — 22 000 Требуются специальные мероприятия (замена грунта)
Гранитный гравий 14 500 Требуются специальные мероприятия (замена грунта)
Графитовая крошка 0,1 — 2
Дресва (мелкий щебень/крупный песок) 5 500 477 260 228
Зола, пепел 40 3,5 2 1,7
Известняк (поверхность) 100 — 10 000 8,7 — 868 4,7 — 472 4,1 — 414
Известняк (внутри) 5 — 4 000 0,43 — 347 0,24 — 189 0,21 — 166
Ил 30 2,6 1,5 1
Каменный уголь 150 13 7 6
Кварц 15 000 Требуются специальные мероприятия (замена грунта)
Кокс 2,5 0,2 0,1 0,1
Лёсс (желтозем) 250 22 12 10
Мел 60 5 3 2,5
Мергель    
Мергель обычный 150 14 7 6
Мергель глинистый (50 — 75% глинистых частиц) 50 4 2 2
Песок    
Песок, сильно увлажненный грунтовыми водами 10 — 60 0,9 — 5 0,5 — 3 0,4 — 2,5
Песок, умеренно увлажненный 60 — 130 5 — 11 3 — 6 2,5 — 5,5
Песок влажный 130 — 400 10 — 35 6 — 19 5 — 17
Песок слегка влажный 400 — 1 500 35 — 130 19 — 71 17 — 62
Песок сухой 1 500 — 4 200 130 — 364 71 — 198 62 — 174
Супесь (супесок) 150 13 7 6
Песчаник 1 000 87 47 41
Садовая земля 40 3,5 2 1,7
Солончак 20 1,7 1 0,8
Суглинок    
Суглинок, сильно увлажненный грунтовыми водами 10 — 60 0,9 — 5 0,5 — 3 0,4 — 2,5
Суглинок полутвердый, лесовидный 100 9 5 4
Суглинок при температуре минус 5 С° 150 6
Супесь (супесок) 150 13 7 6
Сланец 10 — 100      
Сланец графитовый 55 5 2,5 2,3
Супесь (супесок) 150 13 7 6
Торф    
Торф при температуре 10° 25 2 1 1
Торф при температуре 0 С° 50 4 2,5 2
Чернозём 60 5 3 2,5
Щебень    
Щебень мокрый 3 000 260 142 124
Щебень сухой 5 000 434 236 207

Сопротивление заземления для комплектов ZZ-000-015 и ZZ-000-030, указанное в таблице, может использоваться
при различных конфигурациях заземлителя — и точечной, и многоэлектродной.

Электропроводность и посев/внесение удобрений

Связь между электропроводностью и вносимым в почву материалом (семена, удобрения и т.д.) нелинейна. Максимальный экономический эффект достигается при использовании данных почвенной электропроводности в сочетании с другой информацией. Это может быть история урожайности, данные проб почвы и местные агрономические данные. Так, в одних регионах более высокая электропроводность указывает на более высокое содержание глины и емкость катионного обмена почвы (CEC), что позволяет рассчитывать на высокую урожайность и планировать дополнительное внесение семян. В других регионах более высокая электропроводность указывает на избыток глины, что может ограничить урожайность, а значит, есть смысл уменьшить и нормы внесения семян. В обоих случаях карта почвенной электропроводности позволяет выделить разные участки и продумать индивидуальные методы их обработки. Если у вас есть карты почвенной электропроводности, вам пригодятся следующие модели:

  1. Переменные нормы внесения семян и азота на основе ожидаемой урожайности по каждому отдельному участку, рассчитанные исходя из уровней СЕС.
  2. Переменные нормы внесения семян на основе данных о глубине верхнего (пахотного) слоя почвы.
  3. Переменные нормы внесения в почву гербицидов на основе данных об органических веществах, структуре почвы и СЕС.
  4. Переменные нормы внесения извести на основе данных проб грунта в соответствии с уровнями СЕС.
  5. Ограничение применения гипса (сульфата кальция) на богатых натрием почвах.

Как измерить удельное сопротивление земли

Электрофизические свойства земли

Электрофизические свойства земли, в которой находится заземлитель, определяются ее удельным сопротивлением. Чем удельное сопротивление меньше, тем благоприятнее условия для расположения заземлителя.

Определение. Удельным сопротивлением земли называют сопротивление между противоположными плоскостями куба земли ребрами размером 1 м и измеряется в омах.

Чтобы представить себе это сопротивление, напомним, что куб меди с ребрами 1 м имеет сопротивление 175´10-6 Ом при 20 °С.

Таким образом, например, при значении r=100 Ом´м земля имеет сопротивление в 5,7 млрд. раз больше, чем сопротивление меди в том же объеме.

Ниже приведены приближенные значения удельных сопротивлений земли, Ом´м, при средней влажности летом при 20 °С:

— песок — 400…1000 и более;

— супесок — 150…400;

— суглинок — 40…150;

— глина — 8…70;

— садовая земля — 40;

— чернозем — 10…50;

— торф — 20;

— каменистая глина (приблизительно 50%) — 100;

— мергель, известняк, крупнозернистый песок с валунами — 1000…2000;

— скала, валуны — 2000…4000;

— речная вода (на равнинах) — 10…80;

— морская вода — 0,2;

— водопроводная вода — 5…60.

Примечание. Для сооружения заземлителей необходимо знать не приближенные, а точные значения удельных сопротивлений земли в данном месте. Они определяются на местах измерениями.

Свойства земли могут изменяться в зависимости от ее состояния — влажности, температуры и других факторов. Поэтому они могут иметь разные значения в разные времена года из-за высыхания или промерзания грунта, а также его состояния в момент измерения.

Эти факторы учитываются при измерениях удельного сопротивления земли сезонными коэффициентами и коэффициентами, учитывающими состояние земли при измерениях, чтобы требующееся сопротивление заземляющего устройства сохранялось в любой сезон и при любой влажности земли, т. е. при неблагоприятных условиях.

В табл. 1 приведены коэффициенты, учитывающие состояние земли при измерениях:

— коэффициент k1 применяется, если земля влажная, измерениям предшествовало выпадение большого количества осадков;

— коэффициент k2 — если земля нормальной влажности, если измерению предшествовало выпадение небольшого количества осадков;

— коэффициент k3 — если земля сухая, количество осадков ниже нормы.

Таблица 1 Коэффициенты к измеренным значениям удельного сопротивления земли, учитывающие ее состояние во время измерения

Электрод (глубина погружения в землю)

k1

k2

k3

вертикальный

3 м

1,15

1

0,92

5 м

1,1

1

0,95

Горизонтальный

10 м

1,7

1

0,75

50 м

1,6

1

0,8

Измерение удельного сопротивления земли

Измерить удельное сопротивление земли можно прибором (измерителем заземлений) типа МС-08 (или другим подобным) методом четырех электродов. Измерение следует проводить в теплое время года.

Прибор работает по принципу магнитоэлектрического логометра. Прибор содержит две рамки, одна из которых включается как амперметр, вторая как вольтметр. Эти обмотки действуют на ось прибора в противоположных направлениях, благодаря чему отклонения стрелки прибора пропорциональны сопротивлению. Шкала прибора градуирована в омах. Источником питания при измерении служит генератор постоянного тока, приводимый во вращение от руки.

Рис. 1 . Схема измерения удельного сопротивления земли прибором МС-08

Если пропускать ток через крайние электроды (рис. 1), то между средними электродами возникает разность напряжений U. Значения U в однородной земле (слое) прямо пропорциональны удельному сопротивлению r и току I и обратно пропорциональны расстоянию, а между электродами:

U = rI/2pа или р = 2paU/I = 2paR, где R — показания прибора.

Чем больше значение межэлектродного расстояния а, рис. 1, тем больший объем земли охватывается электрическим полем токовых электродов. Благодаря этому, изменяя расстояние а, можно получить значения удельного сопротивления земли в зависимости от разноса электродов. При однородной земле вычисленное значение r не будет изменяться при изменении расстояния а (изменения могут быть вследствие разной степени влажности). В результате измерений, используя зависимость r от расстояния между электродами, можно судить о величинах удельных сопротивлений на разной глубине.

Измерение следует производить в стороне от трубопроводов и других конструкций и частей, которые могут исказить результаты.

Расположение заземляющих электродов

Формул расчёта заземления существует много. Целесообразно применять метод для искусственных заземлителей с геометрическими характеристиками в соответствии с ПУЭ. Напряжение питания составляет 380 В для трёхфазного источника тока или 220 В однофазного.

Нормированное сопротивление заземлителя, на которое следует ориентироваться, составляет не более 30 Ом для частных домов, 4 Ом – для источника тока при напряжении 380 В, а для подстанции 110 кВ – 0,5 Ом.

Для группового ЗУ выбирается горячекатаный уголок с полкой не менее 50 мм. В качестве горизонтальных соединительных перемычек используется полоса сечением 40х4 мм.

Определившись с составом грунта, по таблице выбирается его удельное сопротивление. В соответствии с регионом, подбирается повышающий коэффициент сезонности K м.

Выбирается количество и способ расположения электродов ЗУ. Они могут быть установлены в ряд или в виде замкнутого контура.

Замкнутый контур заземления в частном доме

При этом возникает их экранирующее влияние друг на друга. Оно тем больше, чем ближе расположены заземлители. Значения коэффициентов использования заземлителей K исп для контура или расположенных в ряд, отличаются.

Значения коэффициента
K
исп
при разных расположениях электродов

Количество заземлит. n (шт.)
1 2 3
2 0.85 0.91 0.94
4 0.73 0.83 0.89
6 0.65 0.77 0.85
10 0.59 0.74 0.81
20 0.48 0.67 0.76
Расположение электродов в ряд
Количество заземлит. n (шт.) Отношение расстояния между заземлителями к их длине
4 0.69 0.78 0.85
6 0.61 0.73 0.8
10 0.56 0.68 0.76
20 0.47 0.63 0.71

Влияние горизонтальных перемычек незначительно и в оценочных расчётах может не учитываться.

Типовая схема включения прибора

Работает принцип одновременного использования вольтметра-амперметра на испытуемом участке грунта. Есть три величины: сопротивление, напряжение, сила тока. Параметры вычисляются по закону Ома. Нам известно первоначальное напряжение, а прибор поддерживает силу тока. Зная падение напряжения между тестируемыми стержнями, мы с высокой точностью можем вычислить сопротивление контура заземления.

Погрешность есть, но она несущественна в сравнении с измеряемыми величинами. Сопротивление контакта тестового электрода с грунтом вообще принимается за нулевое, при условии, что стержень чистый и не покрыт коррозией.

Большинство современных приборов сразу выдают готовые параметры защитного заземления, а в старых (при этом не менее надежных и точных) конструкциях — надо будет выполнить простую операцию деления. В соответствии с законом Ома.

Проверка заземления мегаомметром проходит по тому же принципу, только погрешность измерения будет выше. Все-таки земля не является проводником электричества в привычном смысле.

Цель заземления

1. Безопасность для жизни человека / Строительство / Оборудование

  • Чтобы спасти человеческую жизнь от опасности поражения электрическим током или смерти, выдув предохранитель, т. Е. Обеспечить альтернативный путь прохождения тока повреждения, чтобы он не угрожал пользователю
  • Для защиты зданий, машин и оборудования в условиях сбоя.
  • Чтобы все открытые проводящие части не достигли опасного потенциала.
  • Обеспечить безопасный путь для рассеивания токов молнии и короткого замыкания.
  • Обеспечить стабильную платформу для работы чувствительного электронного оборудования, т.е. поддерживать напряжение в любой части электрической системы с известным значением, чтобы предотвратить чрезмерный ток или чрезмерное напряжение на приборах или оборудовании.

2. Защита от перенапряжения

Молния, перенапряжения или непреднамеренный контакт с линиями более высокого напряжения могут приводить к опасным высоким напряжениям в электрической распределительной системе. Заземление обеспечивает альтернативный путь вокруг электрической системы для минимизации повреждений в Системе.

3. Стабилизация напряжения

Есть много источников электроэнергии. Каждый трансформатор можно рассматривать как отдельный источник. Если бы не было общей точкой отсчета для всех этих источников напряжения было бы чрезвычайно трудно вычислить их отношения друг к другу.

Измерение сопротивления Земли (трехточечный метод)

Измерение сопротивления Земли (трехточечный метод)

В этом методе клеммы C1 и P1 тестера заземления замыкаются друг на друга и подключаются к тестируемому заземляющему электроду (трубе). Клеммы P2 и C2 соединены с двумя отдельными шипами, приводимыми в действие в землю. Эти два пика сохраняются в одной и той же линии на расстоянии 25 метров и 50 метров, из-за которых не будет взаимного вмешательства в поле отдельных шипов.

Если мы вращаем ручку генератора с определенной скоростью, мы получаем прямое сопротивление по земле по шкале . Длина спайка в земле не должна превышать 1/20 расстояние между двумя шипами. Сопротивление должно быть проверено путем увеличения или уменьшения расстояния между электродом тестера и шипами на 5 метров.

Обычно длина проводов должна составлять 10 и 15 метров или в пропорции 62% от D.

Предположим, расстояние от Current Spike от земного электрода D = 60 футов. Тогда расстояние от потенциального шипа составит 62% от D = 0, 62D, т.е. 0, 62 x 60 футов = 37 футов.

Электролаборатория

Замер удельного сопротивления земли

Удельное сопротивление грунта необходимо для обеспечения электробезопасности и для длительной и успешной работоспособности электрооборудования. Уровень «электропроводности» грунта характеризуется удельным сопротивлением грунта. На этот параметр могут влиять разные свойства земли (температура, влажность, плотность, химический состав). Измерение удельного сопротивления грунта необходимо для определения эффективности заземления, чтобы в случае плохой проводимости грунта, принять нужные меры.

Замер удельного сопротивления земли нужен для максимально эффективного обеспечения электробезопасности, а также для длительного срока службы и наилучшей работоспособности всех единиц оборудования на предприятии или в электрической сети. Уровень электропроводности земли зависит от удельного сопротивления.

На сопротивление влияет множество параметров: температура земли (чем выше, тем лучше проводимость), ее влажность (с увеличением влажности повышается и способность проводить ток), плотность и химический состав (не стоит недооценивать состав земли, ибо это также важный момент, ведь каждое вещество пропускает ток по-разному). Как известно, земля должна обладать достаточной проводимостью для эффективного заземления. Измерение удельного сопротивления грунта позволяет точно определить уровень проводимости и определить дальнейшие действия по улучшению проводимости. Безопасность и длительный срок службы оборудования будет напрямую зависеть от правильности замера проводимости земли.

Измерения удельного сопротивления грунта

Стоит отметить, что измерения удельного сопротивления грунта имеет смысл осуществлять в тот момент, когда условия для этого оптимальны, так что данные измерительные работы обычно проводятся летом, когда тепло и сухо. В том случае, если замеры удельного сопротивления грунта проводятся, скажем, на севере, где всегда холодно, то осуществляются все подобные работы во время наиболее сильно промерзания земли.

Измерение сопротивления земли — это далеко не единственный, но зато весьма эффективный способ обезопасить персонал и оборудование. Это нужно для безопасной эксплуатации электроэнергетических объектов, продления срока службы электрооборудования, а также для безопасности персонала. В идеале сопротивление заземления должно равняться примерно нулю, однако в реальных условиях этого достичь попросту невозможно. Объясняется этот факт тем, что в совокупности проводка, грунт и все электроприборы из системы электрической коммуникации предприятия имеет свое сопротивление. Это общее сопротивление в любом случае получается довольно высоким, поэтому, например, при пробое тока на корпус или силовой щит оборудования, соединенный с заземлением, ток уйдет в грунт не так быстро как это необходимо, а, следовательно, может повредить приборы, подсоединенные к сети. И даже это далеко не самое страшное, ведь худший исход – это пожар и угроза здоровью человека. Последствия такого исхода могут быть самыми плачевными, поэтому нужно пытаться избегать этого любыми методами.

Повышение безопасности работы электрооборудования

Существует огромный список мероприятий по повышению безопасности работы электрооборудования, так что вышеописанных ситуаций можно легко избежать путем проведения не только плановых, но и внеплановых проверок и замеров сопротивления грунта или других видов работ (различные замеры, испытания и диагностики). Это не только продлит срок службы оборудования, но и сохранит вам нервы и солидные средства. Вы сможете быть уверены в надежности системы отвода тока и не переживать за защитную систему от пробоя.

Чтобы все измерения были максимально точными, наши работники используют только точное и самое современное оборудование. Наша цель – это довольные нашей работой клиенты и сохранение деловой репутации. Наша деятельность всегда продуктивна и объективна. Это обусловлено высокой квалификацией наших профессиональных сотрудников.

Исходные данные для расчета заземления

1. Основные условия, которых необходимо придерживаться при сооружении заземляющих устройств это размеры заземлителей.

1.1. В зависимости от используемого материала (уголок, полоса, круглая сталь) минимальные размеры заземлителей должны быть не меньше:

  • а) полоса 12х4 – 48 мм2;
  • б) уголок 4х4;
  • в) круглая сталь – 10 мм2;
  • г) стальная труба (толщина стенки) – 3.5 мм.

Минимальные размеры арматуры применяемые для монтажа заземляющих устройств

1.2. Длина заземляющего стержня должна быть не меньше 1.5 – 2 м.

1.3. Расстояния между заземляющими стержнями берется из соотношения их длины, то есть: a = 1хL; a = 2хL; a = 3хL.

В зависимости от позволяющей площади и удобства монтажа заземляющие стрежни можно размещать в ряд, либо в виде какой ни будь фигуры (треугольник, квадрат и т.п.).

Цель расчета защитного заземления.

Основной целью расчета заземления является определить число заземляющих стержней и длину полосы, которая их соединяет.

Заземление в электрической сети

Основная причина для заземления в электрических сетях — это безопасность. Когда все металлические детали в электрооборудовании заземлены, тогда, если изоляция внутри оборудования не работает, в корпусе оборудования нет опасных напряжений.

Процесс электрического соединения с самой землей часто называют «заземлением», особенно в Европе, где термин «заземление» используется для описания вышеуказанной наземной проводки.

Если живая проволока касается заземленного корпуса, цепь эффективно закорочена, и предохранитель сразу же взорвется. Когда предохранитель перегорел, опасные напряжения отключены.

Влияние различных факторов

Состав земли, размеры, конфигурация и компактность размещения её фрагментов, влагосодержание и температура, содержание растворимых химических компонентов (солей, кислот, щелочей, остатков гниения органических примесей) отражаются на значении уровня электропроводности. Все эти параметры трансформируются в зависимости от времени года, поэтому меняются и свойства грунта, причём в обширном диапазоне.

В условиях сухого и жаркого лета верхние почвенные слои просыхают, зимой промерзают, в обоих случаях противодействие токорастеканию значительно увеличивается. Так, на глубине 30 см при понижении температуры воздуха с 0 °C до минус 10 °C удельное электросопротивление грунта возрастает в 10 раз, а на глубине 50 см — в 3 раза. Это позволяет оценить коррозионную активность почвы и получить исходные данные для выбора эффективной конструкции заземления или проектирования электрозащитного оборудования для подземного сооружения.

Исходя из этого, коррозионная активность грунтов делится на группы, сведения о которых приводятся в таблице:

Коррозионная активность Удельное электросопротивление, Ом·м
Низкая более 100
Средняя от 20 до 100
Повышенная от 10 до 20
Высокая от 5 до 10
Весьма высокая до 5

Электросопротивление грунта непосредственно влияет на монтажные работы: чем меньше его значение, тем проще произвести установку заземляющих устройств, а это снижает денежные и трудовые затраты.

Метод построения заземляющей ямы

  • Раскопки на земле для нормальной земли. Размер ямы составляет 1.5MX 1.5MX 3.0 M.
  • Используйте 500 мм X 500 мм X 10 мм GI Plate или Bigger для большего количества контактов Земли и уменьшения сопротивления земли.
  • Сделайте смесь древесной угольной порошковой соли и песка в равной пропорции
  • Древесный уголь Порошок используется как хороший проводник электричества, антикоррозийный, ржавчина доказывает для пластины GI для долгой жизни.
  • Целью угля и соли является постоянное увлажнение почвы.
  • Соль просачивается, и уголь поглощает воду, удерживая почву влажной.
  • Уход всегда следует проводить, поливая ямы земли летом, чтобы почва ямы была влажной.
  • Уголь изготовлен из углерода, который является хорошим проводником, минимизирующим устойчивость к земле.
  • Использование соли в качестве электролита для формирования проводимости между GI Plate Coal и Earth с влажностью.
  • Песок используется для образования пористости для циклирования воды и влаги вокруг смеси.
  • Положите пластину GI (ЗЕМНАЯ ПЛИТА) размером 500 мм Х 500 мм X 10 мм в середине смеси.
  • Используйте Double GI Strip размером 30 мм X 10 мм для подключения пластины GI к системе Earthling.
  • Лучше использовать трубку GI диаметром 2, 5 дюйма с фланцем на верхней части трубы GI для покрытия полосы GI от EARTH PLATE до верхнего фланца.
  • Накройте верхнюю часть трубы GI тройным соединением, чтобы избежать заклинивания трубы с пылью и грязью, а также время от времени использовать воду через эту трубу на дне земной пластины.
  • Поддерживайте сопротивление менее 1 Ом от проводника PART EARTH до расстояния 15 метров вокруг ЗЕМЛИ PIT с другим проходом проводника на Земле глубиной не менее 500 мм.
  • Проверьте напряжение между проводниками заземления на нейтраль сетевого питания 220 В переменного тока 50 Гц, оно должно быть менее 2, 0 В.