Принцип работы

Чтобы понять принцип действия катушки индукции, следует знать:

  • вокруг движущихся электрически заряженных частиц (электрический ток) возникает электромагнитное поле. Если проводник с протекающим током смотан в катушку, поле многократно усиливается. Еще большим оно становится при использовании металлического сердечника, что объясняется высокой магнитопроницаемостью металлов по сравнению с воздухом;
  • переменное магнитное поле наводит в проводнике ЭДС (закон электромагнитной индукции, открытый М. Фарадеем).

Способность катушки превращать электрическую энергию в магнитное поле, называется индуктивностью. Она измеряется в генри (Гн), в формулах обозначается литерой L. Катушка индуктивностью в 1 Гн при изменении силы тока со скоростью dI = 1 А/с (ампер в секунду) создает ЭДС в 1 В. Индуктивность катушки зависит от ее длины, потому шаг витков стремятся делать как можно меньшим.

Сердечник в катушке может быть регулируемым, тогда элемент имеет переменную индуктивность. Также применяют катушки вовсе без сердечника. Если катушка включена в цепь постоянного тока, то весь эффект от нее состоит в создании электромагнитного поля. Так устроены, например, электрические магниты для захвата металлолома, устанавливаемые на погрузочных кранах.

При проведении эксперимента надо ограничить ток в цепи, посредством включенной последовательно с катушкой нагрузки, иначе возникнет короткое замыкание.

Мощность в индукторе

Мы знаем, что индуктор в цепи противостоит потоку тока I через него, потому что поток этого тока индуцирует ЭДС, которая противостоит ему, закон Ленца. Затем необходимо выполнить работу от внешнего источника батареи, чтобы ток протекал против этой индуцированной ЭДС. Мгновенная мощность, используемая для форсирования тока I по отношению к этой самоиндуцированной ЭДС (V L), определяется как:

Мощность в цепи задается как P = V * I, поэтому:

Идеальный индуктор не имеет сопротивления, только индуктивность, поэтому R = 0 Ом, и поэтому мощность в катушке не рассеивается, поэтому можно сказать, что идеальный индуктор имеет нулевую потерю мощности.

Обзор пассивных компонентов

Современная радиоэлектронная аппаратура (РЭА) содержит огромное количество электрорадиокомпонентов, т.е. самостоятельных  изделий, выполняющих определенные функции. Электрорадиоэлементы подразделяют на активные и пассивные. К активным относятся транзисторы,  микросхемы ,электронные лампы и т.д., т. е. элементы, способные усиливать или преобразовывать электрические сигналы. К пассивным относятся резисторы, катушки индуктивности, конденсаторы, трансформаторы, коммутационные элементы, т. е. такие элементы, которые предназначены для перераспределения электрической энергии.

Сетевая инфраструктура современного офиса состоит из множества составляющих, правильный выбор которых имеет существенное значение для успешной работы всей инфраструктуры в целом. Пассивные компоненты  играют при этом также немаловажную  роль, обеспечивают среде передачу данных, а также внешний вид, эстетику. Пассивным элементом схемы называется элемент, не имеющий внутренних источников энергии, и выполняющий либо накопление энергии (конденсатор, индуктивность), либо ее рассеяние (резистор).

Пассивные компоненты по сути соответствует пассивному элементу схемы. Пассивные компоненты характеризуются малыми размерами, малым числом выводов (как правило, два-три), низкой стоимостью и, как правило, достаточно высокой стойкостью к воздействиям при сборке узлов. Пассивные элементы могут выступать как дискретные компоненты и как элементы интегральных микросхем. В РЭА интегральные микросхемы  имеют очень большой удельный вес, но пассивные компоненты являются все же самыми распространенными изделиями электронной промышленности. Это можно объяснить  тем, что некоторые элементы трудно выполнить в микросхемном исполнении. Практически невозможно в ИМС изготовить конденсаторы большой емкости, резисторы с большим сопротивлением, сложности в разработке интегральных катушек индуктивности и трансформаторов. Кроме того технические характеристики дискретных элементов лучше, чем интегральных.

Катушки индуктивности разных размеров

Предыдущая
РадиодеталиЧто такое подстроечный резистор: описание устройства и область его применения
Следующая
РадиодеталиДроссели в электрике: что это и где используются?

Назначение и принцип действия

Специалисты задаются вопросом, зачем нужна токовая катушка индуктивности в цепи, и для этого необходимо разобраться в показателях. Коэффициент ЭДС (электродвижущая сила) показывает разницу между энергией и магнитным потоком. Устройства самоиндукции способны влиять на изменения в цепи. Чаще всего дроссели применяются в силовых установках. Они способны контролировать уровень напряжения, не допускают разрыва цепи.

Устройства самоиндукции

Также компоненты устанавливаются на пару с конденсаторами либо резисторами. Благодаря работе катушки фильтры находятся в безопасности. Теперь вызывает интерес, как включается индукционная катушка. Принцип работы построен на изоляции проводников. В конструкции используется электрический каркас с различным сечением. За счёт намоток обеспечивается распределение ёмкости на дросселе.

Интересно! Витки наматываются с определенным шагом, многое зависит от типа катушки.

Свойства катушки индуктивности

Свойства катушки индуктивности:

  • Скорость изменения тока через катушку ограничена и определяется индуктивностью катушки.
  • Сопротивление (модуль импеданса) катушки растет с увеличением частоты текущего через неё тока.
  • Катушка индуктивности при протекании тока запасает энергию в своём магнитном поле. При отключении внешнего источника тока катушка отдаст запасенную энергию, стремясь поддержать величину тока в цепи. При этом напряжение на катушке нарастает, вплоть до пробоя изоляции или возникновения дуги на коммутирующем ключе.

Катушка индуктивности в электрической цепи для переменного тока имеет не только собственное омическое (активное) сопротивление, но и реактивное сопротивление переменному току, нарастающее при увеличении частоты, поскольку при изменении тока в катушке возникает ЭДС самоиндукции, препятствующая этому изменению.

Катушка индуктивности обладает реактивным сопротивлением, модуль которого XL=ωL{\displaystyle X_{L}=\omega L}, где L{\displaystyle L} — индуктивность катушки, ω{\displaystyle \omega } — циклическая частота протекающего тока. Соответственно, чем больше частота тока, протекающего через катушку, тем больше её сопротивление.

Катушка с током запасает энергию в магнитном поле, равную работе, которую необходимо совершить для установления текущего тока I{\displaystyle I}. Эта энергия равна:

Векторная диаграмма в виде комплексных амплитуд для идеальной катушки индуктивности в цепи синусоидального напряжения

Катушка индуктивности в переменном напряжении — аналог подверженного механическим колебаниям тела с массой.

Eсохр=12LI2.{\displaystyle E_{\mathrm {\text{сохр}} }={1 \over 2}LI^{2}{\mbox{.}}}

При изменении тока в катушке возникает ЭДС самоиндукции, значение которой:

ε=−LdIdt.{\displaystyle \varepsilon =-L{dI \over dt}{\mbox{.}}}

Для идеальной катушки индуктивности (не имеющей паразитных параметров) ЭДС самоиндукции равна по модулю и противоположна по знаку напряжению на концах катушки:

|ε|=−ε=U.{\displaystyle |\varepsilon |=-\varepsilon =U{\mbox{.}}}

При замыкании катушки с током на резистор происходит переходной процесс, при котором ток в цепи экспоненциально уменьшается в соответствии с формулой:

I=Iexp(−tT),{\displaystyle I=I_{0}exp(-t/T){\mbox{,}}}

где : I{\displaystyle I} — ток в катушке,

I{\displaystyle I_{0}} — начальный ток катушки,
t{\displaystyle t} — текущее время,
T{\displaystyle T} — постоянная времени.

Постоянная времени выражается формулой:

T=L(R+Ri),{\displaystyle T=L/(R+R_{i}){\mbox{,}}}

где R{\displaystyle R} — сопротивление резистора,

Ri{\displaystyle R_{i}} — омическое сопротивление катушки.

При закорачивании катушки с током процесс характеризуется собственной постоянной времени Ti{\displaystyle T_{i}} катушки:

Ti=LRi.{\displaystyle T_{i}=L/R_{i}{\mbox{.}}}

При стремлении Ri{\displaystyle R_{i}} к нулю, постоянная времени стремится к бесконечности, именно поэтому в сверхпроводящих контурах ток течёт «вечно».

В цепи синусоидального тока, ток в катушке по фазе отстаёт от фазы напряжения на ней на π/2.

Явление самоиндукции аналогично проявлению инертности тел в механике, если аналогом индуктивности принять массу, тока — скорость, напряжения — силу, то многие формулы механики и поведения индуктивности в цепи принимают похожий вид:

F =mdvdt{\displaystyle F\ =m{dv \over dt}} |ε|=LdIdt{\displaystyle |\varepsilon |=L{dI \over dt}},

где

F {\displaystyle F\ } |ε|{\displaystyle |\varepsilon |} U {\displaystyle U\ } ; m {\displaystyle m\ } L {\displaystyle L\ } ; dv {\displaystyle dv\ } dI {\displaystyle dI\ }
Ecoxp=12LI2{\displaystyle E_{\mathrm {coxp} }={1 \over 2}LI^{2}} Ekinet=12mv2{\displaystyle E_{\mathrm {kinet} }={1 \over 2}mv^{2}}

Ток и напряжение в индукторе

Сколько индуктивного напряжения будет генерироваться индуктором, зависит от скорости изменения тока. В нашем уроке об электромагнитной индукции закон Ленца гласил: «Направление индуцированной ЭДС таково, что оно всегда будет противостоять изменению, которое его вызывает». Другими словами, индуцированная ЭДС всегда будет противопоставлять движение или изменение, которые изначально вызвали индуцированную ЭДС.

Таким образом, при уменьшении тока полярность напряжения будет действовать как источник, а при увеличении тока полярность напряжения будет действовать как нагрузка. Таким образом, при одинаковой скорости изменения тока через катушку, увеличение или уменьшение величины индуцированной ЭДС будет одинаковым.

Конструкция

Конструктивно выполняется в виде винтовых или винтоспиральных (диаметр намотки изменяется по длине катушки) катушек однослойных или многослойных намоток изолированного одножильного или многожильного (литцендрат) проводника на диэлектрическом каркасе круглого, прямоугольного или квадратного сечения, часто на тороидальном каркасе или, при использовании толстого провода и малом числе витков — без каркаса. Иногда, для снижения распределённой паразитной ёмкости, при использовании в качестве высокочастотного дросселя однослойные катушки индуктивности наматываются с «прогрессивным» шагом — шаг намотки плавно изменяется по длине катушки.
Намотка может быть как однослойной (рядовая и с шагом), так и многослойной (рядовая, внавал, типа «универсал»). Намотка «универсал» имеет меньшую паразитную ёмкость. Часто, опять же, для снижения паразитной ёмкости, намотку выполняют секционированной, группы витков отделяются пространственно (обычно по длине) друг от друга.

Для увеличения индуктивности катушки часто снабжают замкнутым или разомкнутым ферромагнитным сердечником. Дроссели подавления высокочастотных помех имеют ферродиэлектрические сердечники: ферритовые, флюкстроловые, из карбонильного железа. Дроссели, предназначенные для сглаживания пульсаций промышленной и звуковой частот, имеют сердечники из электротехнических сталей или магнитомягких сплавов (пермаллоев). Также сердечники (в основном ферромагнитные, реже диамагнитные) используют для изменения индуктивности катушек в небольших пределах путём изменения положения сердечника относительно обмотки. На сверхвысоких частотах, когда ферродиэлектрики теряют свою магнитную проницаемость и резко увеличивают потери, применяются металлические (латунные) сердечники.

На печатных платах электронных устройств также иногда делают плоские «катушки» индуктивности: геометрия печатного проводника выполняется в виде круглой или прямоугольной спирали, волнистой линии или в виде меандра. Такие «катушки индуктивности» часто используются в сверхбыстродействующих цифровых устройствах для выравнивания времени распространения группы сигналов по разным печатным проводникам от источника до приемника, например, в шинах данных и адреса.

Терминология

Стандартизированные термины:

Индуктивная катушка — элемент электрической цепи, предназначенный для использования его индуктивности (ГОСТ 19880-74, см. термин 106).

Катушка индуктивности — индуктивная катушка, являющаяся элементом колебательного контура и предназначенная для использования её добротности (ГОСТ 20718-75, см. термин 1).

Электрический реактор — индуктивная катушка, предназначенная для использования её в силовой электрической цепи (ГОСТ 18624-73, см. термин 1). Одним из видов реактора является токоограничивающий реактор, например, для ограничения тока короткого замыкания ЛЭП.

При использовании для подавления помех, сглаживания пульсаций электрического тока, изоляции (развязки) по высокой частоте разных частей схемы и накопления энергии в магнитном поле сердечника часто называют дросселем, а иногда реактором. Стоит отметить, что такое толкование нестандартизированного термина «дроссель» (являющегося калькой с нем. Drossel) пересекается со стандартизированными терминами. В случае если работа данного элемента цепи основана на добротности катушки, то такой элемент следует называть «катушкой индуктивности», в противном случае «индуктивной катушкой».

Цилиндрическую катушку индуктивности, длина которой намного превышает диаметр, называют соленоидом, магнитное поле внутри длинного соленоида однородно. Кроме того, зачастую соленоидом называют устройство, выполняющее механическую работу за счёт магнитного поля при втягивании ферромагнитного сердечника, или электромагнитом. В электромагнитных реле называют обмоткой реле, реже — электромагнитом.

Нагревательный индуктор — специальная катушка индуктивности, рабочий орган установок индукционного нагрева.

При использовании для накопления энергии (например, в схеме импульсного стабилизатора напряжения) называют индукционным накопителем или накопительным дросселем.

Самоиндукция

Катушка индуктивности обладает также очень интересным свойством. При подаче на катушку постоянного напряжения, в катушке возникает на короткий промежуток времени противоположное напряжение.

Это противоположное напряжение называется ЭДС самоиндукции. Эта ЭДС зависит от значения индуктивности катушки. Поэтому, в момент подачи напряжения на катушку сила тока в течение долей секунд плавно меняет свое значение от 0 до некоторого значения, потому что напряжение, в момент подачи электрического тока, также меняет свое значение от ноля и до установившегося значения. Согласно Закону Ома:

где

I – сила тока в катушке , А 

U – напряжение в катушке, В 

 R – сопротивление катушки, Ом

Как мы видим по формуле, напряжение меняется от нуля и до напряжения, подаваемого в катушку, следовательно и ток тоже будет меняться от нуля и до какого то значения. Сопротивление катушки для постоянного тока также постоянное.

И второй феномен в катушке индуктивности заключается в том, что если мы разомкнем цепь катушка индуктивности – источник тока, то у нас ЭДС самоиндукции будет суммироваться к напряжению, которое мы уже подали на катушку.

То есть как только мы разрываем цепь, на катушке напряжение в этот момент может быть  в разы больше, чем было до размыкания  цепи, а сила тока в цепи катушки будет тихонько падать, так как ЭДС самоиндукции будет поддерживать убывающее напряжение.

Сделаем первые выводы о работе катушки индуктивности при подаче на нее постоянного тока. При подаче на катушку электрического тока, сила тока будет плавно увеличиваться, а при снятии электрического тока с катушки, сила тока будет плавно убывать до нуля. Короче говоря, сила тока в катушке мгновенно измениться не может.

Маркировка

При рассмотрении катушек индуктивности оценивается цветовая и кодовая маркировка. Если смотреть на первые цифры, отображается показатель индуктивности. Далее учитывается параметр отклонения:

  • Серебряный 0,01 мкГн, 10%.
  • Золотой 0,1 мкГн, 5%.
  • Черный 0,1мкГн, 20%.
  • Коричневый 1,1 мкГн.
  • Красный 2, 2 мкГн.
  • Оранжевый 1 мкГн.
  • Желтый 4 мкГн.
  • Зеленый 5 мкГн.
  • Голубой 6 мкГн.
  • Фиолетовый 7мкГн.
  • Серый 8 мкГн.
  • Белый 9 мкГн.

Маркировка

В нестабильной цепи переменного электрического тока не обойтись без катушки индуктивности. Выше описаны основные типы изолированных проводников, продемонстрированы их параметры. Учитывается уровень частоты, а также свойства.

Приветствую всех на нашем сайте!

Мы продолжаем изучать электронику с самого начала, то есть с самых основ и темой сегодняшней статьи будет принцип работы и основные характеристики катушек индуктивности. Забегая вперед скажу, что сначала мы обсудим теоретические аспекты, а несколько будущих статей посвятим целиком и полностью рассмотрению различных электрических схем, в которых используются катушки индуктивности, а также элементы, которые мы изучили ранее в рамках нашего курса – резисторы и конденсаторы.

Катушка индуктивности в цепи переменного тока.

Рассмотрим цепь, в которой на катушку индуктивности подается переменный ток:

Давайте посмотрим на зависимости тока и ЭДС самоиндукции от времени, а затем уже разберемся, почему они выглядят именно так:

Как мы уже выяснили ЭДС самоиндукции у нас прямо пропорциональна и противоположна по знаку скорости изменения тока:

Собственно, график нам и демонстрирует эту зависимость Смотрите сами – между точками 1 и 2 ток у нас изменяется, причем чем ближе к точке 2, тем изменения меньше, а в точке 2 в течении какого-то небольшого промежутка времени ток и вовсе не изменяет своего значения. Соответственно скорость изменения тока максимальна в точке 1 и плавно уменьшается при приближении к точке 2, а в точке 2 равна 0, что мы и видим на графике ЭДС самоиндукции. Причем на всем промежутке 1-2 ток возрастает, а значит скорость его изменения положительна, в связи с этим на ЭДС на всем этом промежутке напротив принимает отрицательные значения.

Аналогично между точками 2 и 3 – ток уменьшается – скорость изменения тока отрицательная и увеличивается – ЭДС самоиндукции увеличивается и положительна. Не буду расписывать остальные участки графика – там все процессы протекают по такому же принципу

Кроме того, на графике можно заметить очень важный момент – при увеличении тока (участки 1-2 и 3-4) ЭДС самоиндукции и ток имеют разные знаки (участок 1-2: 0″ title=»Rendered by QuickLaTeX.com» />, участок 3-4: 0″ title=»Rendered by QuickLaTeX.com» />,

Где – круговая частота: . – это частота переменного тока.

Таким образом, чем больше частота тока, тем большее сопротивление будет ему оказывать катушка индуктивности. А если ток постоянный ( = 0), то реактивное сопротивление катушки равно 0, соответственно, она не оказывает влияния на протекающий ток.

Давайте вернемся к нашим графикам, которые мы построили для случая использования катушки индуктивности в цепи переменного тока. Мы определили ЭДС самоиндукции катушки, но каким же будет напряжение ? Здесь все на самом деле просто По 2-му закону Кирхгофа:

А следовательно:

Построим на одном графике зависимости тока и напряжения в цепи от времени:

Как видите ток и напряжение сдвинуты по фазе (ссылка) друг относительно друга, и это является одним из важнейших свойств цепей переменного тока, в которых используется катушка индуктивности:

При включении катушки индуктивности в цепь переменного тока в цепи появляется сдвиг фаз между напряжением и током, при этом ток отстает по фазе от напряжения на четверть периода.

Вот и с включением катушки в цепь переменного тока мы разобрались

На этом, пожалуй, закончим сегодняшнюю статью, она получилась уже довольно объемной, поэтому дальнейший разговор о катушках индуктивности мы будем вести в следующий раз. Так что до скорых встреч, будем рады видеть вас на нашем сайте!

В данной статье мы подробно рассмотрим индуктор. Отдельно разберем индуктор на схеме, обратную ЭДС генерируемую индуктором, постоянную времени индуктора, ток и напряжение в индукторе, а так же мощность и энергию в индукторе.