Что такое резистор

Наиболее простое определение выглядит так: резистор — это элемент электрической цепи, оказывающий сопротивление протекающему через него току. Название элемента происходит от латинского слова “resisto” — “сопротивляюсь”, радиолюбители эту деталь часто так и называют — сопротивление.

Рассмотрим, что такое резисторы, для чего нужны резисторы. Ответы на эти вопросы подразумевают знакомство с физическим смыслом основных понятий электротехники.

Для разъяснения принципа работы резистора можно использовать аналогию с водопроводными трубами. Если каким-либо образом затруднить протекание воды в трубе (например, уменьшив ее диаметр), произойдет повышение внутреннего давления. Убирая преграду, мы снижаем давление. В электротехнике этому давлению соответствует напряжение — затрудняя протекание электрического тока, мы повышаем напряжение в цепи, снижая сопротивление, понижаем и напряжение.

Изменяя диаметр трубы, можно менять скорость потока воды, в электрических цепях путем изменения сопротивления можно регулировать силу тока. Величина сопротивления обратно пропорциональна проводимости элемента.

Свойства резистивных элементов можно использовать в следующих целях:

  • преобразование силы тока в напряжение и наоборот;
  • ограничение протекающего тока с получением его заданной величины;
  • создание делителей напряжения (например, в измерительных приборах);
  • решение других специальных задач (например, уменьшение радиопомех).

Пояснить, что такое резистор и для чего он нужен, можно на следующем примере. Свечение знакомого всем светодиода происходит при малой силе тока, но его собственное сопротивление настолько мало, что если светодиод поместить в цепь напрямую, то даже при напряжении 5 В текущий через него ток превысит допустимые параметры детали. От такой нагрузки светодиод сразу выйдет из строя. Поэтому в схему включают резистор, назначение которого в данном случае — ограничение тока заданным значением.

Watch this video on YouTube

Все резистивные элементы относятся к пассивным компонентам электрических цепей, в отличие от активных они не отдают энергию в систему, а лишь потребляют ее.

Разобравшись, что такое резисторы, необходимо рассмотреть их виды, обозначение и маркировку.

Терморезисторы

Терморезистор – полупроводниковый резистор, включаемый в электрическую цепь, сопротивление которого возрастает при уменьшении температуры и понижается при ее увеличении.
Температурный коэффициент сопротивления ( ) таких резисторов отрицательный.

Позистор – полупроводниковый резистор, включаемый в электрическую цепь, сопротивление которого увеличивается при увеличении температуры и уменьшается при ее уменьшении. Температурный коэффициент сопротивления ( ) таких резисторов положительный.

Терморезисторы (термисторы)

Условное графическое обозначение варисторов

Варисторами – называют полупроводниковые резисторы, в которых используется свойство уменьшения сопротивления полупроводникового материала при увеличении приложенного напряжения.

Система обозначений варисторов включает буквы (сопротивление нелинейное) и цифры.

обозначает материал

  • – карбид кремния
  • – селен

– конструкцию

  • – стержневая
  • – дисковая
  • – микромодульная

– порядковый номер разработки. Последним элементом обозначения также является число. Оно указывает на классификационное напряжение в вольтах,
например – СН-1-2-1-100.

Варисторы применяют для защиты от перенапряжений контактов, приборов и элементов радиоэлектронных устройств, высоковольтных линий и линий связи, для стабилизации и регулирования электрических величин и т. д.

Классификация резисторов

Три резистора разных номиналов для поверхностного монтажа (SMD), припаянные на печатную плату

Резисторы являются элементами электронной аппаратуры и могут применяться как дискретные компоненты или как составные части интегральных микросхем. Дискретные резисторы классифицируются по назначению, виду ВАХ, по способу защиты и по способу монтажа, характеру изменения сопротивления, технологии изготовления.

По назначению:

  • резисторы общего назначения;
  • резисторы специального назначения:
    • высокоомные (сопротивления от десятка МОм до единиц ТОм, рабочие напряжения 100—400 В);
    • высоковольтные (рабочие напряжения — десятки кВ);
    • высокочастотные (имеют малые собственные индуктивности и ёмкости, рабочие частоты до сотен МГц);
    • прецизионные и сверхпрецизионные (повышенная точность, допуск 0,001 — 1 %).

По характеру изменения сопротивления:

Постоянные резисторы (для навесного монтажа).

Переменный резистор.

Подстроечные резисторы.

Прецизионный многооборотный подстроечный резистор.

  • постоянные резисторы;
  • переменные регулировочные резисторы;
  • переменные подстроечные резисторы.

По способу защиты от влаги:

  • незащищённые;
  • лакированные;
  • компаундированные;
  • впрессованные в пластмассу;
  • герметизированные;
  • вакуумные.

По способу монтажа:

  • для печатного монтажа;
  • для навесного монтажа;
  • для микросхем и микромодулей.

По виду вольт-амперной характеристики:

  • линейные резисторы;
  • нелинейные резисторы:
    • варисторы — сопротивление зависит от приложенного напряжения;
    • терморезисторы — сопротивление зависит от температуры;
    • фоторезисторы — сопротивление зависит от освещённости;
    • тензорезисторы — сопротивление зависит от деформации резистора;
    • магниторезисторы — сопротивление зависит от величины магнитного поля.
    • мемристоры (разрабатываются) — сопротивление зависит от протекавшего через него заряда (интеграла тока за время работы).

По виду используемых проводящих элементов:

Проволочный резистор с отводом.

Плёночный угольный резистор (часть защитного покрытия удалена для демонстрации токопроводного слоя).

  • Проволочные резисторы. Наматываются из проволоки или ленты с высоким удельным сопротивлением на какой-либо каркас. Обычно имеют значительную паразитную индуктивность. Для снижения паразитной индуктивности почти всегда выполняются с бифилярной намоткой. Высокоомные малогабаритные проволочные резисторы иногда изготавливают из микропровода. Иные типы резисторов называются непроволочными резисторами.
  • Непроволочные резисторы. Резистивный элемент представляет собой объёмную структуру физического тела или поверхностного слоя, образованного на изоляционных деталях (тонкую плёнку металлического сплава или композитного материала с высоким удельным сопротивлением, низким коэффициентом термического сопротивления, обычно нанесённую на цилиндрический керамический сердечник). Концы сердечника снабжены напрессованными металлическими колпачками с проволочными выводами для монтажа. Иногда, для повышения сопротивления, в плёнке исполняется винтовая канавка для формирования спиральной конфигурации проводящего слоя. Сейчас это наиболее распространённый тип резисторов для монтажа в отверстия печатных плат. По такому же принципу выполнены резисторы в составе гибридной интегральной микросхемы: в виде металлических или композитных плёнок, нанесённых на обычно керамическую подложку методом напыления в вакууме или трафаретной печати.

По виду применяемых материалов:

  • Углеродистые резисторы. Изготавливаются в виде плёночных и объёмных. Плёнки или резистивные тела представляют собой смеси графита с органическими или неорганическими веществами.
  • Металлопленочные или металлоокисные резисторы. В качестве резистивного материала используется тонкая металлическая лента.
  • Композиционные резисторы.
  • Проволочные резисторы.
  • Интегральный резистор. Резистивный элемент — слаболегированный полупроводник, формируемый в кристалле микросхемы в виде обычно зигзагообразного канала, изолированного от других цепей микросхемы p-n переходом. Такие резисторы имеют большую нелинейность вольт-амперной характеристики. В основном используются в составе интегральных монокристаллических микросхем, где применить другие типы резисторов принципиально невозможно.

NTC

Основные сведения

Сопротивление NTC-терморезисторов уменьшается при нагреве, их ТКС отрицательный. Зависимость сопротивления от температуры изображена на графике ниже.

Здесь вы можете убедиться, что при нагреве сопротивление NTC-терморезистора уменьшается.

Такие термисторы изготавливают из полупроводников. Принцип действия заключается в том, что с ростом температуры увеличивается концентрация носителей зарядов, электроны переходят в зону проводимости. Кроме полупроводников используются оксиды переходных металлов.

Обратите внимание на такой параметр как бета-коэффициент. Учитывается при использовании терморезистора для измерения температуры, для усреднения графика сопротивления от температуры и проведения расчетов с помощью микроконтроллеров

Бета-уравнение для приближения кривой изменения сопротивления термистора вы видите ниже.

Интересно: в большинстве случаев термисторы используют в диапазоне температур 25-200 градусов Цельсия. Соответственно могут использоваться для измерений в этих диапазонах, в то время как термопары работают и при 600 градусах Цельсия.

Где используется

Терморезисторы с отрицательным ТКС часто используют для ограничения пусковых токов электродвигателей, пусковых реле, для защиты от перегрева литиевых аккумуляторов и в блоках питания для уменьшения зарядных токов входного фильтра (емкостного).

На схеме выше приведен пример использования термистора в блоке питания. Такое применение называется прямым нагревом (когда элемент сам разогревается при протекании тока через него). На плате блока питания NTC-резистор выглядит следующим образом.

На рисунке ниже вы видите, как выглядит NTC-терморезистор. Он может отличаться размерам, формой, а реже и цветом, самый распространенный – это зелёный, синий и черный.

Ограничение пускового тока электродвигателей с помощью NTC-термистора получило широкое распространение в бытовой технике благодаря простоте реализации. Известно, что при пуске двигателя он может потреблять ток в разы и десятки раз превышающий его номинальное потребление, особенно если двигатель пускается не в холостую, а под нагрузкой.

Принцип работы такой схемы:

Когда термистор холодный его сопротивление велико, мы включаем двигатель и ток в цепи ограничивается активным сопротивлением термистора. Постепенно происходит разогрев этого элемента и его сопротивление падает, а двигатель выходит на рабочий режим. Термистор подбирается таким образом, чтобы в горячем состоянии сопротивление было приближено к нулю. На фото ниже вы видите сгоревший терморезистор на плате мясорубки Zelmer, где и используется такое решение.

Недостаток этой конструкции состоит в том, что при повторном пуске, когда термистор еще не остыл – ограничения тока не происходит.

Есть не совсем привычное любительское применение терморезистора для защиты ламп накаливания. На схеме ниже изображен вариант ограничения всплеска тока при включении таких лампочек.

Если терморезистор используется для измерения температуры – такой режим работы называют косвенным нагревом, т.е. он нагревается от внешнего источника тепла.

Интересно: у терморезисторов нет полярности, так что их можно использовать как в цепях постоянного, так и переменного тока не опасаясь переполюсовки.

Маркировка

Терморезисторы могут маркироваться как буквенным способом, так и содержать цветовую маркировку в виде кругов, колец или полос. При этом различают множество способов буквенной маркировки – это зависит от производителя и типа конкретного элемента. Один из вариантов:

На практике, если он применяется для ограничения пускового тока чаще всего встречаются дисковые термисторы, которые маркируются так:

5D-20

Где первая цифра обозначает сопротивление при 25 градусах Цельсия – 5 Ом, а «20» — диаметр, чем он больше – тем большую мощность он может рассеять. Пример такого вы видите на рисунке ниже:

Для расшифровки цветовой маркировки можно воспользоваться таблицей, изображенной ниже.

Из-за обилия вариантов маркировки можно ошибиться в расшифровке, поэтому для точности расшифровки лучше искать техническую документацию к конкретному компоненту на сайте производителя.

Что такое тиристор, его устройство и обозначение на схеме

Тиристор — полупроводниковый элемент, имеющий только два состояния: «открыто» (ток проходит) и «закрыто» (тока нет). Причем оба состояния устойчивые, то есть переход происходит только при определенных условиях. Само переключение происходит очень быстро, хоть и не мгновенно.

Так выглядят тиристоры

По способу действия его можно сравнить с переключателем или ключом. Вот только переключается тиристор при помощи напряжения, а отключается пропаданием тока или снятием нагрузки. Так что принцип работы тиристора понять несложно. Можно представлять его как ключ с электрическим управлением. Так, да не совсем.

Тиристор, как правило, имеет три выхода. Один управляющий и два, через которые протекает ток. Можно попробовать коротко описать принцип работы. При подаче напряжения на управляющий выход, коммутируется цепь через анод-коллектор. То есть, он сравним с транзистором. Только с той разницей, что у транзистора величина пропускаемого тока зависит от поданного на управляющий вывод напряжения. А тиристор либо полностью открыт, либо полностью закрыт.

Внешний вид

Внешний вид тиристора зависит от даты его производства. Элементы времен Советского Союза — металлические, в виде «летающей тарелки» с тремя выводами. Два вывода — катод и управляющий электрод — находятся на «дне» или «крышке» (это с какой стороны смотреть). Причем электрод управления меньше по размерам. Анод может находиться с противоположной стороны от катода, или торчать вбок из-под шайбы, которая есть на корпусе.

Два вида тиристоров — современные и советские, обозначение на схемах

Современные тиристоры выглядят по-другому. Это небольшой пластиковый прямоугольник с металлической пластиной сверху и тремя выводами-ножками снизу. В современном варианте есть одно неудобство: надо смотреть в описании какой из выводов анод, где катод и управляющий электрод. Как правило, первый — анод, затем катод и крайний правый — это электрод. Но это как правило, то есть, не всегда.

Принцип работы

По принципу действия, тиристор можно еще сравнить с диодом. Пропускать ток он будет в одном направлении — от анода к катоду, но происходить это будет только в состоянии «открыто». На схемах тиристор похож на диод. Также имеется анод и катод, но есть еще дополнительный элемент — управляющий электрод. Понятное дело, есть отличия и в выходном напряжении (если сравнивать с диодом).

Принцип работы тиристора в устройствах переменного напряжения: на выходе есть только верхняя часть синусоиды

В схемах переменного напряжения тиристор будет пропускать только одну полуволну — верхнюю. Когда приходит нижняя полуволна, он сбрасывается в состояние «закрыто».

Конструкция и применение

Современные фоторезисторы изготавливают из селенида свинца, сульфида свинца, антимонида индия, но чаще всего из селенида и сульфида кадмия и кадмия. Спектральная характеристика сульфида кадмия практически полностью совпадает с устройством человеческого глаза. Длина волны пиковой чувствительности – 560-600 нм, что соответствует видимой части спектра.

Для изготовления элемента из сульфида кадмия, высокоочищенный порошок смешивают с инертными связующими веществами. Затем, эту смесь спекают и прессуют. В вакуумной среде на основание с электродами наносят тонкий фоточувствительный слой в виде извилистой дорожки. Затем, основание помещается в прозрачную оболочку, для защиты фоточувствительного элемента. Основной областью применения этих радио элементов является автоматика, с помощью них можно создать простые и надежные схемы фотореле без использования токовых усилителей.

Такие фотореле применяются в системах управления и контроля. В измерительной технике фоторезисторы используются для измерения высоких температур в различных технологических процессах. У фоторезисторов обязательно определен и диапазон температуры. Если использовать датчик при разных температурах, то следует обязательно ввести уточняющие преобразования, т.к. свойство сопротивления зависит от внешней температуры.

Для характеристики интенсивности света используют физическую величину освещённость (обозначение E), что показывает количество светового потока, достигающего какой-либо поверхности. Для измерения единицы имеется люкс (лк), где 1 люкс означает, что на поверхность размером 1 m2 равномерно падает световой поток в 1 люмен (лм). В реальной жизни свет практически никогда не падает на (жилую) поверхность равномерно и поэтому освещённость получается больше в среднем значении. Для сравнения приведены некоторые примеры освещённости:

Цвет волны и диапазон ее длины.

Как проверить с помощью мультиметра

Важный вопрос при эксплуатации термисторов — знание принципов их проверки. При оценке исправности нужно понимать, что термисторы бывают двух видов — с положительными и отрицательным температурным коэффициентом (об этом упоминалось выше). Следовательно, сопротивление детали снижается или уменьшается с ростом температуры.

С учетом этого факта для проверки термистора потребуется всего два элемента — паяльник для нагрева и мультиметр.

Алгоритм действий:

  1. Перевод прибора в режим замера сопротивления.
  2. Подключение щупов к клеммам терморезистора (расположение не имеет значения).
  3. Фиксация сопротивления на бумаге и поднесение нагретого паяльника к детали.
  4. Контроль сопротивления (оно растет или падает в зависимости от вида терморезистора).
  5. Если сопротивление снижается или увеличивается, полупроводник работает правильно.

Для примера можно использовать термистор NTC типа MF 72. В нормальном режиме он показывает сопротивление 6,9 Ом при обычной температуре.

После поднесения паяльника к изделию ситуация изменилась — сопротивление пошло в сторону снижения и остановилось на уровне двух Ом. По этой проверке можно сделать вывод, что терморезистор исправен.

Если сопротивление меняется резко или вообще не двигается, можно говорить о выходе детали из строя.

Стоит учесть, что такая проверка очень грубая. Для точного контроля нужно проверить температуру и сопротивление термистора, а после сравнить данные с официальными параметрами.

Определение

Резистор происходит от английского «resistor» и от латинского «resisto», что в переводе на русский язык звучит как «сопротивляюсь». В русскоязычной литературе наравне со словом «резистор» используют слово «сопротивление». Из названия ясна основная задача этого элемента – оказывать сопротивление электрическому току.

Он относится к группе пассивных элементов, потому что в результате его работы ток может только понижаться, то есть в отличие от активных элементов – пассивные сами по себе не могут усиливать сигнал. Что из второго закона Кирхгофа и закона Ома значит, что при протекании тока на резисторе падает напряжение, величина которого равна величине протекающего тока, умноженного на величину сопротивления. Ниже вы видите, как обозначается сопротивление на схеме:

Условное обозначение на схеме легко запомнить – это прямоугольник, по ГОСТ 2.728-74 его размеры равны 4х10 мм. Существуют варианты обозначений для резисторов разной мощности рассеивания.

Классификация термисторов

Габариты и конструкция терморезисторов различны и зависят от области их применения.

Форма термисторов может напоминать:

  • плоскую пластину;
  • диск;
  • стержень;
  • шайбу;
  • трубку;
  • бусинку;
  • цилиндр.

Самые маленькие терморезисторы в виде бусинок. Их размеры меньше 1 миллиметра, а характеристики элементов отличаются стабильностью. Недостатком является невозможность взаимной подмены в электрических схемах.

Классификация терморезисторов по числу градусов в Кельвинах:

  • сверх высокотемпературные — от 900 до 1300;
  • высокотемпературные — от 570 до 899;
  • среднетемпературные — от 170 до 510;
  • низкотемпературные — до 170.

Проверка работоспособности

Проверить тиристор можно либо при помощи мультиметра, либо создав простенькую проверочную схему. Если при прозвонке иметь перед глазами технические характеристики, можно заодно проверить сопротивление переходов.

Один из видов: силовой Т122-25

Прозвонка мультиметром

Для начала разберем прозвонку мультиметром. Переводим прибор в режим прозвонки.

На цифровых мультиметрах есть режим прозвонки, который позволяет проверять полупроводниковые приборы

Далее поочередно прикасаемся щупами к парам выводов:

  • При подключении щупов к аноду и катоду, прибор должен показывать обрыв — «1» или «OL» в зависимости от мультиметра. Если отображаются иные показатели хоть в одном направлении, тиристор пробит.
  • Между анодом и управляющим электродом (выводом) должно быть небольшое сопротивление в одном из направлений. В противоположном — обрыв. Если в обоих направлениях или обрыв, или небольшое сопротивление — элемент поврежден.

Обратите внимание, что величина сопротивления у разных серий разная — на это не стоит обращать особого внимания. Если хотите проверить и сопротивление переходов, посмотрите в технических характеристиках

Схема проверки работоспособности тиристора мультиметром

На рисунке представлены схемы испытаний. Крайний справа рисунок — усовершенствованный вариант с кнопкой, которую устанавливают между анодом и управляющим выводом. Для того чтобы мультиметр зафиксировал протекающий по цепи ток, кратковременно нажимаем на кнопку.

При помощи лампочки и источника постоянного тока (батарейка тоже пойдет)

Если мультиметра нет, можно проверить тиристор при помощи лампочки и источника питания. Подойдет даже обычная батарейка или любой другой источник постоянного напряжения. Вот только напряжение должно быть достаточным для того, чтобы засветить лампочку. Потребуется еще сопротивление или обычный кусок проволоки. Из этих элементов собирается простая схема:

Схема проверки тиристора при помощи лампочки и источника питания

  • Плюс от источника питания подаем на анод.
  • К катоду подключаем лампочку, второй ее вывод подключаем к минусу источника питания. Лампочка не горит, так как термистор заперт.
  • Кратковременно (при помощи куска проволоки или сопротивления) соединяем анод и управляющий вывод.
  • Лампочка загорается и продолжает гореть, хотя перемычка убрана. Термистор остается в открытом состоянии.
  • Если выкрутить лампочку или выключить источник питания, то лампочка, естественно, погаснет.
  • Если восстановить цепь/питание, она не загорится.

Заодно с проверкой, эта схема позволяет понять принцип работы тиристора. Ведь картинка получается очень наглядной и понятной.

Главные параметры терморезисторов

При выборе детали важно ориентироваться на ее показатели и характеристики, меняющиеся в зависимости от типа, производителя, исходного материала и других показателей. При выборе изделия нужно выяснить главные параметры и определить, подходят они для решения поставленной задачи или нет

При выборе изделия нужно выяснить главные параметры и определить, подходят они для решения поставленной задачи или нет.

Параметры терморезисторов:

  1. ГАБАРИТЫ. При покупке нужно быть уверенным, что деталь подходит по размеру и поместится на плате (в схеме).
  2. СОПРОТИВЛЕНИЯ RT и RT. Параметры измеряются в Омах и указываются применительно к текущей температуре в градусах Цельсия или Кельвинах. Если деталь рассчитана на работу при температурах от -100 до +200 градусов Цельсия, температурный режим для окружающей среды принимается на уровне 20-25 градусов Цельсия.
  3. ПОСТОЯННАЯ ВРЕМЕНИ Τ (СЕК). Параметр отражает тепловую инерционность. При расчете учитывается время, которое необходимо для изменения температуры термического резистора на 63% от разницы t детали и окружающего воздуха. В большинстве случаев этот параметр принимается равным 100 градусов Цельсия.
  4. ТКС (в % на один градус Цельсия). Как правило, этот показатель прописывается для той же температуры t, что и холодное сопротивление. В такой ситуации при обозначении используются другие цифры — at.
  5. Мощность рассеивания Pmax (предельно допустимый параметр), Вт. По этому показателю можно судить о пределе, до достижения которого в полупроводнике не происходит необратимых изменений (параметры остаются прежними). При этом превышение температуры tmax при достижении Pmax исключено.
  6. Температура tmax — максимально допустимый параметр, при котором характеристики терморезистора длительное время остаются без изменений (на установленном производителем уровне).
  7. Коэффициент энергетической чувствительности (измеряется в Вт/проценты*R). Обозначение — G. Показатель отражает мощность, которую необходимо рассеять на детали для снижения параметра R на один процент.
  8. Коэффициент рассевания (измеряется в Вт на один градус Цельсия). Условное обозначение — H. Параметр отражает мощность, которая рассеивается на термическом резисторе при разнице в температурных режимах детали и окружающего воздуха на один градус.

Рассмотренные выше коэффициенты (G и H) зависят от характеристик применяемого полупроводника и особенностей обмена тепла между изделием и окружающей его средой. Параметры связаны друг с другом через специальную формулу — G=H/100а.

  1. Теплоемкость (измеряется в Джоулях на один градус Цельсия). Условное обозначение — C. Показатель отражает объем тепла (энергии), необходимой для нагрева терморезистора на один градус.

Некоторые рассмотренные параметры связаны друг с другом. В частности, постоянная времени τ равна отношению между теплоемкостью и коэффициентом рассеивания.

При покупке позитрона, кроме указанных выше параметров, нужно учесть интервал позитивного температурного сопротивления и кратность изменения R в секторе положительного ТКС.

Виды и принцип работы, обозначение на схемах

В зависимости от материалов, используемых во время изготовления на производстве все, фоторезисторы можно условно разделить на две большие группы: с внутренним и внешним фотоэффектом.

В производстве элементов с внутренним фотоэффектом и применяют нелегированные материалы, например германий или кремний. Фотоны, попадающие на фоторезистор, заставляют электроны двигаться из валентной в зону проводимости.

Благодаря этому возникает огромное число свободных электронов, тем самым резко возрастает электропроводность и, поэтому, снижается сопротивление. Фоторезистор с внешним фотоэффектом изготавливают из материалов, с добавлением примесей легирующей добавки, которая создает новую энергетическую зону поверх имеющейся валентной, богатую электронами.

Кроме того, электронам новой зоны необходимо на порядок меньше энергии, чтобы перейти в зону проводимости благодаря более низкой энергетической щели. Поэтому фоторезисторы с внешним фотоэффектом гораздо более чувствительны к различным длинам светового спекира волн.

Фоторезистор на схемах обозначается также как и обычный резистор, но с добавление двух стрелочек, которые направлены к прямоугольнику. В качестве материалов для фоторезисторов широко используются сульфиды, селениды и теллуриды различных элементов, а также соединения типа AlMBv. В инфракрасной области могут быть использованы фоторезисторы на основе PbS, PbSe, PbTe, InSb, в области видимого света и ближнего спектра ультрафиолета — CdS.

Сегодня фоторезисторы широко применяются во многих отраслях науки и техники. Это объясняется их высокой чувствительностью, простотой конструкции, малыми габаритами и значительной допустимой мощностью рассеяния. Значительный интерес представляет использование фоторезисторов в опто- электронике. В радиолюбительских конструкциях фоторезисторы применяются как световые датчики в устройствах слежения и автоматики, автоматических и фотореле в быту, в охранных системах.