Способы защиты

В быту используются однофазные стабилизаторы напряжения, которые способны защитить электроприборы и технику

Для обеспечения симметричной работы силовых сетей и нормирования величины напряжения в каждой из однофазных линий применяются специальные корректирующие приборы. Эту функцию чаще всего выполняют классические стабилизаторы напряжения. Однако полностью устранить несимметрию в питающих цепях эти приборы не способны, поскольку их назначение – стабилизация только одной фазы. По этой причине защитить всю трехфазную сеть такими устройствами не удается, как и ликвидировать последствия перекоса.

Не исключены ситуации, когда стабилизаторы сами становятся причиной неравномерности распределения электроэнергии по фазам.

Для защиты трехфазных цепей от асимметрии фаз используются следующие организационные и технические приемы:

  • качественная проработка проекта энергоснабжения, учитывающего неравномерность нагрузок;
  • использование специальных приборов, с помощью которых удается автоматически выравнивать их (так называемых симметрирующих трансформаторов);
  • корректировка действующих схем энергопотребления (если ранее были допущены ошибки).

Существенную помощь в защите от асимметрии оказывает специальное блокирующее оборудование (реле контроля фаз и напряжения, например), отключающее линию при обнаружении нарушений.

Прямое и обратное чередование фаз

Трехфазный переменный ток графически представляет собой три фазы в виде чередующихся синусоид на оси Х, сдвинутых по отношению друг к другу на 120°. Первую синусоиду можно представить как фазу А, следующую синусоиду как фазу B, сдвинутую на 120° относительно фазы А, и третью фазу C, также сдвинутую на 120° по отношению к фазе В.

Графическое отображение сдвига фаз на 120° трехфазной сети

Если фазы имеют порядок АВС, то такое следование фаз называется прямым чередованием. Следовательно, порядок фаз СВА будет означать обратное чередование. Всего возможно три прямых чередования фаз ABС, BCА, CАВ. Для обратного чередования фаз порядок будет выглядеть как CВА, BAC, ACB.

Проверить чередование фаз трехфазной сети можно фазоуказателем ФУ — 2. Он представляет собой небольшой корпус, на котором имеются три зажима для подключения трех фаз сети, алюминиевого диска с черной точкой на белом фоне и три обмотки. Принцип действия у него аналогичен работе асинхронного электродвигателя.

Если подключить фазоуказатель к трем фазам и нажать кнопку на корпусе, то диск начнёт вращаться в одну из сторон. Когда вращение диска совпадает со стрелкой на корпусе, тогда фазоуказатель показывает прямое чередование фаз, вращение диска в обратном направлении указывает на обратное чередование фаз.

Электрическая схема фазоуказателя ФУ-2

В каких случаях необходимо знать порядок чередования фаз. Во-первых, если дом подключен к трехфазной сети и установлен индукционный электросчётчик, тогда нужно соблюдать на нем прямое чередование фаз. При неправильном подключении такого электросчетчика возможен его самоход, что даст неправильные показания в сторону увеличения расхода электроэнергии.

Также, если в доме используются асинхронные электродвигатели, то направление вращения ротора будет зависеть от порядка чередования фаз. Меняя чередование фаз на асинхронном электродвигателе можно изменить направление вращения ротора в нужную сторону.

Основные Схемы соединений трехфазных цепей.

Обмотки электрических машин (генераторов, синхронных компенсаторов, двигателей) и трансформаторов соединяют в звезду или треугольник.
При соединении трех обмоток генератора в звезду концы их объединяют в одну точку (рис. 5, в), которую называют нулевой (или нейтральной). Электродвижущие силы между началами и нулевой точкой обмоток называют фазными ЭДС и обозначают Ед, Eg, Ее, или просто £ф. Электродвижущие силы между выводами фаз называют линейными tn. Они получаются как разность векторов соответствующих фазных ЭДС генератора, например Ед — Eg = Едд (рис. 5,в).
Рис. 5. Соединение обмоток генератора в звезду (о), векторная диаграмма ЭДС (б), вычитание векторов фазных ЭДС (в)
Рис. 6. Соединение обмоток генератора треугольником (д) и векторная диаграмма ЭДС (б)
Порядок индексов в обозначении линейных ЭДС не произволен — индексы ставятся в порядке
вычитания векторов: Ев-Ес= Евс\ Ес-Ёл = ЕСА- С учетом заданного направления вращения векторов такой расстановке индексов соответствует вычитание вектора ЭДС отстающей фазы из вектора ЭДС опережающей. В результате векторы линейных ЭДС всегда опережают уменьшаемые фазные векторы на 30°. Значения линейных ЭДС в \Д или в 1,73, раз больше фазных, в чем легко убедиться измерением векторов на диаграмме.
Соединение обмоток генератора треугольником показано на рис. 6,о. Точки А, В, С являются общими для каждой пары фазных обмоток. Если к зажимам генератора не подсоединена нагрузка, то в обмотках, образующих замкнутый контур, отсутствует ток, обусловленный синусоидальными ЭДС промышленной частоты, сдвинутыми относительно друг друга на (1/3) Т, так как в каждый момент времени геометрическая сумма ЭДС, действующих в контуре треугольника, равна нулю. Убедиться в этом можно, рассматривая векторную диаграмму рис.»6, б и синусоиды мгновенных значений ЭДС трехфазного генератора (рис. 1, б).
Рис. 7. Изменение на 180° фазы наведенной ЭДС при перемене обозначений зажимов:
а — фазы ЭДС Ед и Еа совпадают; б — ЭДС Ед и Eg находятся в противофазе

Из рис. 6, а видно, что при соединении треугольником линейные провода отходят непосредственно от начала и конца обмотки каждой фазы, поэтому фазные ЭДС равны линейным и совпадают с ними по фазе. Заметим, что на станциях обмотки генераторов, как правило, соединяют в звезду. Соединение треугольником встречается крайне редко и только у турбогенераторов одного типа (ТВС-30).
Обмотки трансформаторов, так же как и генераторов, соединяют в звезду и треугольник (схема зигзага встречается редко). Схема звезды часто выполняется с выведенной нулевой точкой. Схемы соединений в звезду, в звезду с выведенной нулевой точкой и в треугольник в тексте обычно обозначают буквами У, Ун и Д соответственно. Обмотки высшего напряжения (ВН) трансформаторов соединяют в У или Д независимо от схемы соединения источников питания. Вторичные обмотки среднего (СН) и низшего (НН) напряжений также соединяют в У или Д.
В отличие от генераторов у мощных трансформаторов соединение треугольником по крайней мере одной из его обмоток является обычным ,»de»:,»es»:,»pt»:,»fr»:,»it»:,»bg»:,»ro»:,»lt»:,»el»:}

Нарушение симметрии в высоковольтных сетях

Инверторные сварочные аппараты способны нарушить распределение нагрузки тока

В сетях высокого напряжения появление нежелательной асимметрии связано с наличием мощных однофазных нагрузок или трехфазных потребителей с неодинаковым распределением по фазам. Источниками перекоса в промышленных сетях 0,38-10 кВ являются различные типы плавильных электропечей (рудотермические, индукционные и подобные им нагревательные установки). К перечню создающего асимметрию оборудования следует отнести инверторные сварочные аппараты, отличающиеся высокими токами потребления и способными нарушить равномерность распределения по нагрузкам.

Мощными источниками опасной асимметрии являются тяговые подстанции железнодорожного транспорта, поскольку современные электровозы представляют собой однофазные потребители электрической энергии. Их мощность достигает нескольких сотен киловатт, что только увеличивает вероятность нарушений при распределении нагрузок.

Убедиться в их наличии можно с помощью специальных токоизмерительных клещей, посредством которых удается проверить цепи, работающие с перегрузкой. При обнаружении в одной из фаз токовых значений, заметно превышающих допустимые величины, можно смело говорить о наличии опасного перекоса.

Принципы проверки фазировки

Такая операция выполняется перед подключением в параллельную работу 2 и более линий, которые работают независимым способом. Еще от обновленного генератора, после капремонта, во время которого могла поменяться схема присоединения статора к сети. Проверить одноименность или расцветку фазных проводников обязательно нужно. Ведь в последствии их нужно будет соединить.

Такая операция:

  1. Направлена на предотвращение ошибки во время присоединения линий установки параллельно.
  2. Она позволяет правильно проверить все контакты.
  3. Проверяется правильность присоединения токоведущих кабелей, включаемых к аппарату.

Проверяется совпадение по линии одинаковых токов, а именно отсутствие углового сдвига. Только при получении положительных результатов во время фазировки, генераторы либо трансформаторы работают параллельно и подключаются на одновременную работу.

Для чего проводят чередование фаз

Фазирование или фазировка – это уточнение аналогичности фаз под током каждой из 3 линий. Сфазированные обмотки согласуются, что обеспечивает правильную работу разных электрических приборов.

Проверка чередования фаз обязательно проводится при применении трехфазных электродвигателей с использованием переменного тока.

Нюансы:

Фазировка влияет на направление вращения двигателя, что является очень важным условием, особенно, если сразу несколько механизмов используют двигатели одного порядка.
Другим случаем, когда обязательно нужно обратить внимание на чередование фаз, является работа с помощью электросчетчика индукционного типа. При обратном порядке, нередко случается самопроизвольное вращение диска, расположенного на счётчике

Эти счетчики в настоящее время менее требовательны к фазировке, однако на индикаторе также появляются соответствующие данные.
В некоторых случаях контроль расположения фаз можно выполнить без использования специальных приборов. Например, если подключение трехфазной сети питания происходит при соединении силовых кабелей. Если жилы внутри этого кабеля различны по своему цвету, то прозвонка происходит в разы быстрее. В некоторых случаях нужно просто очистить наружную изоляцию кабеля, чтобы узнать, где находится какая фаза. Жилы одинакового цвета обозначают, что фазы одинаковые.

Однако, цветовая маркировка не всегда гарантия правильного расположения фаз, ведь далеко не все производители придерживаются таких норм. Иногда на разных концах кабеля можно встретить различные цвета, поэтому идеальным и самым надежным способом определить, где какая фаза, является использование прозвонки жил.

Что такое фазировка трехфазной сети

Фазировку трех фаз проводят в трансформаторных подстанциях при параллельном подключении трансформаторов. Подключение двух трансформаторов к одной трехфазной сети осуществляется межсекционными автоматическими выключателями. Проверить одноименные фазы фазоуказателем не представляется возможным.

Однако можно определить одноименные фазы мультиметром или любым вольтметром с пределом измерения 500 В. При проведении фазировки, нужно соблюдать все меры безопасности и заранее проверить на работоспособность мультиметр

Перед нахождением одноименных фаз важно определить наличие фазного напряжения относительно «земли» на всех шинах (на случай обрыва)

Проверка на обрыв и нахождение одноименных фаз в трехфазной сети

Далее, работая в резиновых перчатках, замеряют линейные напряжения на шинах разных трансформаторов. Если найдены шины, напряжение между которыми около нуля, то такие шины имеют одноименные фазы и их отмечают. Следом находят остальные две пары одноимённых шин и также отмечают.

Если напряжения между всеми шинами разных трансформаторов ниже линейного 380 В, но значительно отличаются от нуля, то фазировать такие трансформаторы нельзя, т. к. они имеют разные схемы соединения. Найденные одноимённые шины соединяют на разъединителях для параллельной работы.

Отличие фазного и линейного напряжения в трехфазной сети

Когда трансформатор имеет различные напряжения, при одинаковых схемах соединений, их подгоняют переключателем отводов обмоток трансформаторов до номинального значения. Фазировку высоковольтных линий проводят специальными высоковольтными индикаторами УВНФ.

Негативное влияние перекоса напряжений и токов

Перекос фаз может привести в негодность электрооборудование

На появление фазной асимметрии необходимо оперативно реагировать по таким причинам:

  • В этом случае реальна угроза повреждения подключенных к данной сети приборов или же ухудшение их рабочих показателей.
  • Это приводит к нарушениям в работе источников электроэнергии (трансформаторов подстанции, в частности).
  • Еще одно следствие ненормального распределения фаз – уменьшение срока эксплуатации станционного оборудования.

При появлении асимметрии в промышленных сетях потребление электроэнергии также возрастает, а включенное в них линейное оборудование испытывает сильные перегрузки. На распределительных подстанциях резко возрастает расход масла в трансформаторах, а контрольно-распределительная аппаратура может выйти из строя. Все эти угрозы в конечном счете приводят к дополнительным материальным затратам, связанным с необходимостью ремонта или замены сгоревшего оборудования

Чтобы не допустить таких ситуаций, потребуется заранее продумать действенные меры, способствующие их предупреждению. Если же избежать перекоса фаз не удается, придется использовать все возможные способы его устранения.

Особенности прямой последовательности фаз

Это также называется способом асимметричных компонентов. Подробнее, элемент определения асимметричных электронных компонентов. Он основан на разложение несимметричной системы на 3 симметричные: прямая, обратная, нулевая.

Где применяется прямая последовательность фаз:

  1. Метод используется для определения асимметричных порядков действия электроэнергетических компонентов.
  2. Данный способ применяют некоторые элементы РЗиА. Например, на этом построен принцип действия трансформатора напряжения при последовательности в ноль. Основан принцип на суммировании значений напряжения во всех фазах.
  3. Для 3-фазных транспортных ЛЭП, в итоге получается матрица точных собственных направлений.

Этот способ определения удачно применяется, чтобы рассчитать несимметричные режимы 3-фазной линии, либо возникновения замыкания цепи. Фазоуказатель помогает определить прямую последовательность фаз, что нужно для работы некоторых устройств. При необходимости, можно легко изменить последовательность фаз.

3 проверенных способа определения фазы и нуля без приборов. Как проверить фазировку мультиметром

РазноеКак проверить фазировку мультиметром

Главное, что вы должны знать: у обычного цифрового мультиметра, нет отдельного режима для определения фазы или нуля, узнать это можно лишь увидев на экране величину напряжения или не увидев его.

По большому счету, принцип определения фазы тестером, схож с работой обычной индикаторной отвертки, где фаза определяется по свечению встроенной лампы, которая загорается только при наличии цепи фаза – сопротивление – лампа — ёмкость (человек).

Ток, с фазы, протекающий через такую индикаторную отвертку, проходит через высокое сопротивление, встроенное в индикатор, затем также через лампу в ней, а потом попадает в ёмкость – в качестве которой выступает человек (для этого мы и касаемся задней стороны индикаторной отвертки при определении) и только при наличии всех участников такой цепи, лампа будет гореть.  

Причины перекоса фаз в трехфазной сети

Обрыв нулевого провода является одной из причин перекоса фаз

Известно несколько причин появления перекоса фаз в трехфазных сетях, основными их которых принято считать:

  • Неравномерное распределение действующих мощностей по нагрузкам, подключенным к каждой из фазных линий.
  • «Обрыв нуля», чаще всего проявляющийся в отгорании нейтрали.
  • Другие неполадки в станционном оборудовании или в подключенных к нему местных потребителях.

В первом случае потребляемая линейной нагрузкой мощность резко возрастает (или снижается), что приводит к соответственному изменению тока, протекающего в данной ветке.

В случае обрыва нейтрали (отгорания нуля) перекос возникает из-за того, что функция нулевого провода автоматически передается одному из фазных проводников; при этом напряжение на всех других смещается в сторону увеличения. Нарушения в работе станционного оборудования также приводят к неравномерному распределению по фазным линиям, но уже на стороне трансформаторной «звезды», а не подключенного к ней объекта (загородного дома, в частности).

Универсальность определителя фаз

Для этого лучше всего подходит механизм вычисления последовательности фазировки, то есть определитель. Он предназначен для обнаружения фазировки, в которой напряжение отстает от значения в фазе. Взятая для начала отсчета точка этого отставания нужна, чтобы правильно подключить к сети, приборы, которые требуют соблюдения последовательности чередования фаз. Одним из примеров такого прибора может быть трехфазный четырехпроводный электросчетчик.

Конструкция такого устройства отличается простотой:

  1. Основа представляет электроизоляционный материал, например, текстолит.
  2. В нём размещены 2 настенных электропатрона, внутри которых находится обычные лампы накаливания, закрытые полупрозрачными кожухами.
  3. На их основании укрепляют конденсатор и клеммник подсоединения проводов.

Нередко такие определители делают самостоятельно в домашних условиях. При подключении такого определителя к 3-фазной сети, из-за вставленного конденсатора в каждой фазе, меняется напряжение, поэтому лампы накаливания светятся по-разному. По интенсивности свечения ламп можно судить о принадлежности оставшихся двух проводов к оставшимся фазам.

По отношению к этой фазе, 1 из не подсоединенных проводов, например, А, будет опережающим. То есть, напряжение в ней будет опережать значение в фазе В. А последняя фаза С будет отстающей, в ней напряжение будет отставать от В. Схема такого подключения выглядит следующим образом. При подаче на определитель напряжения, одна из светоисточников будет гореть ярче, а другой хуже. Линия, где диод горит ярче, является отстающей. Фаза, где лампа горит наполовину, является опережающей. Таким образом, можно определить, правильное ли чередование фаз.

Советы: как определить фазы в трехфазной цепи

В некоторых случаях, определять фазы в трехфазной цепи не нужно. Например, если к трехфазной сети подключен такой же двигатель, то он способен вращается в обе стороны. Чтобы изменить направление, нужно поменять местами любые 2 фазы. Также можно равномерно распределить нагрузку на все фазы, чтобы избежать перекоса.

Если условно обозначить разные линии в любой 3-фазной сети, как буквы А, В, С, то можно выделить такие варианты их чередования:

  • Обратные (CBA, BAC, ACB).
  • Прямые (ABC, BCA, CAB);

В случае подключения оборудования к 3-фазной линии с силовым проводом, порядок следования фаз можно проверить, не используя специальные приборы. В таком случае смотрят на разноцветную либо цифирную маркировку изоляции проводов.

Добиться самых правильных показаний может метод прозвонки кабеля. Например, использование 2 теле-трубок. 1 из них в таком случае является активной, то есть обладает батареей питания, другая же пассивная и не имеет тока. Также существует парные гарнитуры, которая снабжена наушниками, а также зажимами, или специально предназначенные для использования фазирования. Еще можно использовать мегомметр. При этом, нужно обязательно строго соблюдать меры безопасности.

Как выполнить проверку?

Сам прибор (предоставлен на фото ниже) представляет собой три обмотки и диск, который вращается при проверке. На нем нанесены черные метки, которые чередуются с белыми. Это сделано для удобства считывания результата. Работает прибор по принципу асинхронного двигателя.

Итак, подключаем на выводы прибора три провода от источника трехфазного напряжения. Нажимаем кнопку на приборе, которая расположена на боковой стенке. Увидим, что диск начал вращаться. Если он крутится по направлению нарисованной на приборе стрелки, значит, чередование фаз прямое и соответствует одному из вариантов порядка АВС, ВСА или САВ. Когда диск будет вращаться в противоположную стрелке сторону, можно говорить об обратном чередовании. В таком случае возможен один из таких трех вариантов – СВА, ВАС или АСВ.

Если возвращаться к истории с монтажниками, то все что они сделали – это лишь определение чередования фаз. Да, в обоих случаях порядок совпал. Однако нужно было еще проверить фазировку. А ее невозможно выполнить с помощью фазоуказателя. При включении были соединены разноименные фазы. Чтобы узнать где условно А, В и С, нужно было применить мультиметр или осциллограф.

Мультиметром измеряется напряжение между фазами разных источников питания и если оно равно нулю, то фазы одноименные. Если же напряжение будет соответствовать линейному напряжению, то они разноименные. Это самый простой и действенный способ. Более подробно о том, как пользоваться мультиметром, вы можете узнать в нашей статье. Можно, конечно, воспользоваться осциллографом и смотреть по осциллограмме какая фаза от какой отстает на 120 градусов, но это нецелесообразно. Во-первых, так на порядок усложняется методика, и во-вторых такой прибор стоит немалых денег.

На видео ниже наглядно показывается, как проверить чередование фаз: