Необходимость заземления
Несмотря на всю важность, расчёт защитного заземления и его установка стали обязательными относительно недавно. Ещё несколько десятилетий назад при обеспечении электроэнергией деревянных жилых домов проводили только нулевой провод и фазу, в то время как на производствах с целью обеспечения безопасности уже использовали заземление и зануление оборудования
В основе этих процессов лежит понятие нейтрали.
Этим термином в электрике принято обозначать место схождения трёх фаз, соединённых звездой. Вместе с заземлением эта точка образует глухозаземлённую нейтраль трансформатора. Чтобы заземлить электроприборы, их нужно соединить с нейтралью посредством специально приваренной шины. Для зануления оборудования нейтраль требуется соединить с нулевой шиной.
Сегодня в жилых и общественных зданиях заземляют водопроводные, канализационные, газопроводные трубы, а также распределительные электрощитки. Защитное заземление создают путём соединения с землёй металлических, не проводящих ток конструкций, которые могут оказаться под напряжением. Оно является обязательным для сетей:
- Переменного тока — при напряжении от 380 В.
- Постоянного тока — при напряжении от 440 В.
Методика расчета
Расчет делается исходя от того, какое заземление используется. В формуле указывается количество используемых заземлителей, их длину и толщину. Также все зависит и от параметров грунта, который окружает частный дом.
Существует несколько вариантов установки заземлителей. Это такие методы, как:
- Вертикальный. Делиться на два подвида: тот, что устанавливают у поверхности и тот, что монтируют с заглублением (предпочтительно на 70 см).
- Горизонтальный. Делиться на два подвида: с установкой по поверхности грунта и в траншее (предпочтительно 50 – 70 см).
Заземление включает в себя горизонтальные и вертикальные стержни, расчет которых осуществляется отдельно. В зависимости от длинны стержня, берется дистанция между ними, т. е. размер а должен быть кратен размеру L. Пример: а = 1xL; а = 2xL.
Формула, по которой делается расчет одиночного вертикального стержня, который не закапывается в почву, выглядит следующим образом:
где:
- p – удельное сопротивление почвы;
- l – длина заземлителя;
- D – диаметр электрода.
Примечание: если заземление имеет угловой профиль с шириной b, то d = 0.95b.
Расчет заземлителя, который монтируют с углублением на 70 см (h = 0,7 м) в землю, производится по следующей формуле:
Горизонтальное заземление у поверхности рассчитывается по формуле:
Примечание: формула предоставлена для прямоугольного и трубного профиля с шириной полки b, для полосы считать d нужно с учетом d= 0.5b.
Расчет электрода, который располагается в траншее 70 см (h = 0,7 м), производится по следующей формуле:
Для полосы шириной b необходимо считать d =0,5 b.
Расчет суммарного сопротивления заземлителя осуществляется следующим образом:
где:
- n – численность вертикальных заземлителей;
- Rв и Rг – сопротивления заземленных элементов;
- nв – коэффициент употребления заземлителей.
Этот коэффициент берется из таблицы:
Методом коэффициента использования можно определить, какое воздействие проявляют друг на друга токи растекания с заземлителей при их разнообразном размещении. Например, если их объединить параллельно, то токи растекания электродов имеют взаимное действие на каждый элемент. Поэтому при минимальной дистанции между элементами, сопротивление заземленного контура будет значительно больше.
Заземление происходит по нескольким схемам расположения электродов. Самой распространенной считается схема в виде треугольника. Но это не обязательная конфигурация электродов. Также их можно разместить в одну линию или последовательно по контуру. Такой вариант удобен в том случае, когда для обустройства системы был выделен небольшой узкий участок на земле.
Дополнительно вы можете проверить результат, воспользовавшись онлайн-калькулятором для расчета заземления!
Заземляющий проводник соединяет с электрическим щитом сам контур конструкции. Ниже приведены схемы:
При проведении расчетов заземления важно обеспечить точность, чтобы не допустить ухудшения электробезопасности. Чтобы не допустить ошибки в расчетах, вы можете воспользоваться специальными программами для расчета заземления в интернете, с помощью которых можно точно и быстро рассчитать нужные значения!. На видео ниже наглядно демонстрируется пример расчетных работ в программе Электрик:
На видео ниже наглядно демонстрируется пример расчетных работ в программе Электрик:
Вот по такой методике производится расчет заземления для частного дома. Надеемся, предоставленные формулы, таблицы и схемы помогли вам самостоятельно справиться с работой!
Наверняка вам будет интересно:
- Схема электрического отопления дома
- Как сделать молниеотвод своими руками
- Что такое система уравнивания потенциалов
Скачать
Электрик — Бесплатная программа для электриков и проектировщиков предназначена в помощь электрификаторам всех уровней в быту
Программа позволяет:-рассчитать мощность по 1ф/3ф току.-рассчитать ток по 1ф/3ф мощности.-по заданому сечению и условиям прокладки оределить ток и мощность.-рассчитать потери напряжения-рассчитать токи короткого замыкания-определить диаметр провода,кабеля,шнура и спецкабеля.-определить сечение провода,кабеля,шнура и спецкабеля-проверить выбранное сечение на:-нагрев-экономическую плотность тока-потери напряжения-корону -выбрать сечение провода,кабеля,шнура и спецкабеля при определенной прокладке и потерю напряжения для проводников до 1000 В при определенной длине.-определить ток плавки материала проводника.-определить сопротивление.-определить нагрев.-определить энергию электрической цепи.-определить количество теплоты,выделяющейся в цепи(работа).-расчитать заземление,как одиночного так и контора.-расчитать промерзания грунта для работ по заземлению и прокладке кабелей-выбрать автоматы защиты-произвести расчет работ и выбор оборудования связанных с электрификацией.и многое другое.
Сайт программы: http://rzd2001.narod.ru/load.html
Программа Заземление — предназначена для расчета заземления
Программа Заземление сводится к определению длины горизонтального заземлителя (обвязка) и числа вертикальных заземлителей (стержней) при заданных условиях.
Тестировалась на Win 9x, Win XP, Win 7, Win 8, Win 10Инсталляции не требуетсяДля работы программы в Win 9x необходима библиотека для программ написанных на языке VB. Проверте, установлен ли у Вас файл C:\Windows\System\msvbvm60.dll Если у Вас его нет, то взять можно здесьУстанавливается файл msvbvm60.dll или в C:\Windows\System или в директорию программы.Подробная помощь и описание работы в программе zz.exe
Сайт программы: http://rzd2001.narod.ru/zz.html
Программа Расчет зон молниезащиты предназначена для расчета зон молниезащиты
Установите длину, ширину и высоту здания или сооружения,которое собираетесь защищать. Щелкните по последнему текстовому полю (желтое) и выберете n -среднегодовое число ударов молнии в 1 кв.км земной поверхностив месте расположения здания(сооружения) щелчком на соответствующемтекстовом поле в нижней правой части карты. Выберете из базы данных категорию защищаемого здания/сооружения. Выберете зону защиты: А или Б (щелкните на выбранное желтое поле)в соответствии с N (ожидаемое количество поражений молнией)Читайте примечание (кнопка «Примечание»). Выберете из 5-ти схем соответствующую вам и щелкните. Установите значения в левых текстовых полях и нажмите кнопку»Расчет»К каждому из пяти схем соответствует свое примечание(кнопка «Примечание»)Там же и формулы для расчета каждой схемы защиты.
Сайт программы: http://rzd2001.narod.ru/mz.html
Программа Короткое замыкание kz1000 v 1.1 предназначена для расчета токов короткого замыкания в электроустановках переменного тока напряжением до 1 кВ kz1000
Программа позволяет:рассчитать ток 1-но(3-х) фазного короткого замыканияна кабельных и воздушных линиях.Расчет в программе ведется согласно указаниям ГОСТ 28249-93 «Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ».
Сайт программы: http://rzd2001.narod.ru/kz.html
«ElectriCS Storm»
Более сложной в использовании программой, для работы с которой требуются навыки моделирования, является ElectriCS Storm. Использовать ее для вычислений заземляющего контура дома не целесообразно, т.к. вы скорее всего запутаетесь и рассчитаете все с ошибками. Мы рекомендуем работать с данным софтом профессионалам в области энергетики или же студентам ВУЗов пересекающихся специальностей.
Преимуществом данного программного продукта является то, что можно осуществлять проектирование заземляющего устройства (ЗУ) и тем самым выводить 3D модель готовых защитных контуров. Помимо этого функциональные возможности программы позволяют рассчитывать электромагнитную обстановку и заземление подстанций.
Все чертежи можно сохранять в dwg формате, благодаря чему потом их можно открыть в AutoCAD.
Расчет заземляющего контура
Расчёт заземления выполняется для того чтобы выявить сопротивление контура заземления, который сооружается при эксплуатировании, его габариты и форму.
Конструкция контура включает в себя:
- Вертикальный заземлитель;
- Горизонтальный заземлитель;
- Заземляющий проводник.
Вертикальные устройства углубляются в грунт на определенное расстояние. Горизонтальные устройства объединяет между собой вертикальные составляющие элементы. При помощи заземляющего проводника происходит соединение контура заземления прямо с электрическим щитком. Габариты и число этих заземлителей, интервал между ними, удельное сопротивление почвы – все эти параметры полностью зависят на сопротивление заземления. К чему сводится расчёт?
Из-за заземления опасный потенциал отправляется в грунт, поэтому создается защита людей от удара электротоком. Величина электротока стекания в грунт зависит от сопротивления контура заземления. Чем сопротивление ниже, тем величина опаснейшего потенциала на поверхности пораженной электрической установки будет минимальнее. Устройства заземления должны удовлетворять возложенным на них особым требованиям, а именно данных сопротивления и растеканию электротоков и распределения опасного для жизни потенциала.
Исходя из этого, главный расчёт заземления защиты ведется к определению сопротивления и растеканию электротока устройства. Это сопротивление в прямой зависимости от габаритов и числа электропроводников заземления, интервала между ними, глубины их монтирования и электропроводимости почвы.
Инструкция
Для выполнения расчетов в специальные поля необходимо внести исходные показатели:
- Почва верхнего слоя грунта. Удельное сопротивление грунта изменяется при разном его составе (песчаная почва, супесь, суглинок, глина, чернозем и т.д.) и степени увлажненности (сухой, умеренно, сильно увлажненный и т.д.). Это значение необходимо выбрать из выпадающего меню.
- Климатический коэффициент. Он зависит от климатической зоны. Его значение также выбирается из выпадающего меню. Свою климатическую зону можно определить, воспользовавшись таблицей.
Климатические показатели зон | ||||
Сезон | I | II | III | IV |
Усредненное значение самых низких температурных показателей за январь, °C | -20+15 | -14+10 | -10 до 0 | 0+5 |
Усредненное значение самых
высоких температурных показателей за июль, °C |
+16+18 | +18+22 | +22+24 | +24+26 |
- Нижний слой грунта. Данный показатель выбирается аналогично п.1.
- Численный показатель вертикальных заземлителей.
- Углубленность поверхностной толщи грунта, м.
- Метраж вертикального заземлителя, м. Для защиты заземлителя от климатических воздействий, величина этого показателя должна составлять не менее 1,5 – 2 м.
- Глубина горизонтального заземления, м. По той же причине, это заземление располагают на глубине более 0,7 м.
- Длина соединительной полосы, м.
- Диаметр вертикального заземлителя, м., зависит от материала, из которого он будет выполнен: полоска 12х4 – 48 мм2; уголок 4х4; стальной стержень (диаметр) – 10 мм2; стальная труба (толщина стенки) – 3,5 мм.
- Ширина горизонтального заземлителя, м.
Пользователю достаточно выполнить ряд несложных действий, а программа сама рассчитает следующие показатели и приведет подробный отчет:
- удельное электросопротивление земли;
- сопротивление единичного вертикального заземлителя;
- длина горизонтального заземлителя и его сопротивление;
- общее сопротивление растеканию электрического тока.
355
«Электрик»
Первый программный продукт, который хотелось бы рассмотреть, называется «Электрик». Мы уже говорили о нем, когда рассматривали лучшие программы для расчета сечения кабеля. Так вот и с вычислениями параметров заземляющего контура «Электрик» может запросто справиться. Преимущество данного продукта заключается в том, что он достаточно прост в использовании, русифицирован и к тому же есть возможность бесплатного скачивания. Увидеть интерфейс программы вы можете на скриншотах ниже:
Все, что вам нужно – задать исходные данные, после чего нажать кнопку «Расчет контура». В результате вы получите не только подробную методику вычислений с используемыми формулами, но и чертеж, на котором будет изображен готовый контур заземления. Что касается точности расчетных работ, то тут мы рекомендуем использовать только самые последние версии программы, т.к. в устаревших версиях множество недоработок, которые были устранены со временем. Если вам нужно рассчитать заземляющий контур для частного дома либо более серьезных сооружений, к примеру, котельной либо подстанции, рекомендуем использовать данный продукт.
Расчет заземления в программе Электрик показан на видео:
Важные моменты: расчет контура заземления
Надо принять во внимание на такой момент – получаемые на практике данные всегда отличны от расчётов, проводимых в теории. В случае глубинного или модульного монтирования – разница связывается с тем, что в формуле расчёта обычно применяется несменяемое оценочное удельное сопротивление почвы на всей глубине электродов
Хотя на практике, такого никогда не происходит.
Даже если характер земли не изменяется – его удельное сопротивление сокращается с глубиной: почва становится наиболее плотной, наиболее влажной; на глубине от 5-ти метров обычно присутствуют водоносные слои. По факту, полученное сопротивление будет ниже того что получено в расчетах значительно (в 90 % ситуаций выходит сопротивление заземления в три раза меньше). В случае электролитного заземления – различие связывается с тем, что в формуле расчёта применяется коэффициент «С», который берут в расчёт как среднюю величину поправки, которую нельзя представить в качестве формул и зависимостей.
Получают коэффициент из большого количества характеристик почвы:
- Температурный режим;
- Уровень влаги;
- Рыхлость;
- Диаметр частиц;
- Гигроскопичность;
- Концентрация солей.
Процесс формирования щелочи продолжительный и относительно постоянный. Со временем концентрация электролита в земле возрастает. Также возрастает объём почвы с присутствием электролита окружающего электрод. Через несколько лет после монтирования «полезный» объём, который получился можно описать 3-метровым радиусом вокруг электрода. Поэтому, сопротивление электролитного заземления ZANDZ с годами значительно сокращается.
Замеры показали солидное снижение:
- 4 Ома непосредственно после монтирования;
- 3 Ома спустя 12 месяцев;
- 1,9 Ома через 4 года.
Пример расчета заземляющего устройства будет представлен ниже.
Расчёт сопротивления
Правильный расчёт защитного заземления заключается в точном определении сопротивления растекания тока (Rз), которое зависит от множества факторов (влажности и плотности грунта, количества солей, конструктивных особенностей заземлительного устройства, диаметра и глубины погружения подключённого провода и др.).
Их снижение достигается путём уменьшения сопротивления растекания тока. Результатом такого снижения является уменьшение тока, проходящего сквозь тело человека при аварии.
В процессе расчёта заземления необходимо учитывать такой важный показатель, как удельное сопротивление грунта. Таблица ПУЭ позволяет узнать его для разных видов почвы:
- Песка с разным уровнем залегания подземных вод.
- Водонасыщенной супеси (пластинчатой и текучей).
- Пластичной и полутвёрдой глины.
- Суглинка.
- Торфа.
- Садовой земли.
- Чернозёма.
- Кокса.
- Гранита.
- Каменного угля.
- Мела.
- Глинистого мергеля.
- Пористого известняка.
Все представленные в таблице разновидности грунта отличаются разным уровнем влажности, которая также сказывается на конечном значении сопротивления растекания тока. Для его точного определения удельное сопротивление умножают на коэффициент сезонности. Эта цифра зависит от низшей температуры и способа расположения электродов (вертикального или горизонтального).
Помимо удельного сопротивления почвы (ρ), для подсчёта сопротивления растекания (Rз) необходимо знать длину электрода (l), диаметр прута (d) и глубину расположения средней точки заземлителя (h). Взаимосвязь этих величин отражается в формуле Rз = ρ/2πl∙ (ln (2l/d)+0.5ln ((4h+l)/(4h-l)).
Если основой заземлительной установки являются сваренные сверху вертикальные электроды (n), целесообразнее будет использовать формулу Rn = Rз/(n∙ Kисп), в которой буквами Kисп обозначается коэффициент использования электрода (с учётов влияния соседних). Его также легко найти в специальной таблице.
Независимо от выбранной формулы, при подсчёте защитного заземления следует принимать во внимание нормированное сопротивление заземлителя (для частного дома, источника тока или подстанции), размеры основных деталей конструкции и соединительных элементов, а также количество и метод соединения электродов (в ряд или в форме замкнутого контура). Проводить расчёт заземлительного контура имеет смысл только в том случае, если в качестве заземлителей используются искусственные элементы
Формул для определения сопротивления естественных заземлителей не существует
Проводить расчёт заземлительного контура имеет смысл только в том случае, если в качестве заземлителей используются искусственные элементы. Формул для определения сопротивления естественных заземлителей не существует.
Что важно знать
Заземление дома необходимо для того чтобы снизить напряжение соприкосновения до неопасного показателя. Благодаря ему потенциал направляется в землю и защищает человека от поражения электрическим током. В ПУЭ (Глава 1.7, п. 1.7.62.) указывается, что частный дом должен иметь сопротивление растекания при трехфазном питании 4 и 8 Ом (первое значение при 380 В, второе – 220 В), а при однофазном – 2 и 4 Ом.
Количество заземлителей необходимо выбрать таким образом, чтобы обеспечить нормативное сопротивление растеканию электрического тока. Чем меньше сопротивление — тем лучше, таким образом обеспечивается эффективность действия заземляющего устройства при выполнении функций защиты от действия электрического тока.
Электроды изготавливаются из меди, оцинкованной и черной стали. Профили сечения указаны на рисунке ниже:
Онлайн калькулятор для расчета заземления
Основные условия, которых следует придерживаться при монтировании заземляющих устройств это габариты приспособлений.
В зависимости от применяемого материала минимум по габаритам устройств должен быть не менее:
- Полоса 12 на 4 – 48 мм2.
- Уголок 4 на 4.
- Круглая сталь – 10 мм2.
- Труба из стали (размер стенки) – 3,5 миллиметров.
Длина стержня устройства для заземления должна быть не меньше полутора-двух метров.
Интервал между стержнями заземлителями берётся из соотношения их длины, то есть а=:
- 1хL;
- 2хL;
- 3хL.
В зависимости от площади, которая позволяет и комфорта монтирования, стержни заземления можно устраивать в рядок, либо в качестве фигуры, треугольной, квадратной формы. А какова цель расчёта устройства для защиты? Главная задача расчёта – выявить число стержней заземлителей и размер полоски, которая их объединяет в единую конструкцию. Если кроме устройства заземления следует монтировать систему внешней защиты от молнии, можно воспользоваться специальной программой расчёта вероятности поражения объекта, который под защитой спецприёмника. Сервис разработан профессионалами.
Онлайн калькулятор дает возможность:
- Провести верные расчеты;
- Провести проверку надёжности устройства защиты от молнии;
- Сделать более рациональный и правильный проект молниезащиты.
Это обеспечивает наименьшую цену конструкции и монтажа, сокращая не требуемый запас и применяя наименее высокие, наименее дорогостоящие в монтировании приёмники молнии
Также это обеспечивает наименьшее количество поражений устройства, понижая вторичные отрицательные последствия, что очень важно на объектах с большим количеством электроприборов (количество ударов молнии сокращается с сокращением высоты стержневых приёмников молнии)
Функционал сервиса дает возможность высчитать результативность запланированной защиты в виде доступных параметров:
- Вероятность попадания молнии в объекты устройства (прочность защитной системы высчитывается как 1 минус число вероятности).
- Количество поражений молнией в устройство заземления за 12 месяцев.
- Количество прорывов молнии, минуя защитный барьер, за 12 месяцев.
Зная эти информационные данные, создатель проекта сможет сравнить требования и нормативы с полученной надёжностью и предпринять мероприятия по перестройке конструкции защиты.
Пример расчета контура заземления
Для изготовления заземлителя обычно используется металлический уголок длиной 2,5-3 метра и размером 50х50 мм. При установке расстояние между элементами должно соответствовать их длине, или 2,5-3 метра. Показатель сопротивления для глиняного грунта будет 60 Ом*м. Согласно таблице климатических зон, значение сезонности для средней полосы составит около 1,45. Сопротивление будет равно: 60*1,45=87 Ом*м.
Пошаговый алгоритм монтажа заземления:
- Выкопать возле дома траншею по контуру глубиной 0,5 м.
- Забить в ее дно металлический уголок. Габариты его полки подобрать с учетом условного диаметра электродного элемента, который вычисляется по формуле d=0.95*p=0.995*0.05=87 Ом*м.
- Определить глубину залегания средней точки уголка: h=0.5*l+t=0,5*2,5*0,5=1,75 м.
- Подставить данное значение в ранее описанную формулу для расчета величины сопротивления одного заземлителя. Полученный параметр в итоге составит 27,58 Ом.
Необходимое число электродов можно определить по формуле N=R1/(Kисп*Rнорм). В результате получится 7. Изначально в качестве Кисп применяется цифра 1. В соответствии с табличными данными, для семи заземлительных устройств значение составит 0,59. Подставив полученную величину в формулу расчета, получаем результат: для дачного участка необходимо использовать 12 электродных элементов.
Соответственно, производится новый перерасчет с учетом этого параметра. Кисп по таблице теперь составит 0,54. Если использовать это значение в формуле, то в результате получится 13 штук. Тогда величина сопротивления электродов будет равна 4 Ома.
Виды заземляющих конструкций
Расчёт заземления следует проводить с учётом того, где оно будет располагаться. По месту расположения заземляющая конструкция может быть:
- Выносной. Заземлитель устанавливается за пределами площади, на которой находятся приборы, нуждающиеся в отведении электрического заряда.
- Контурной. Электроды размещаются по контуру площади с оборудованием, а также внутри неё.
Заземление приборов, находящихся в закрытых помещениях, осуществляется путём прокладывания специальных магистралей для укладки проводов. Если электрооборудование располагается на открытой местности, необходимости в оборудовании магистралей нет, корпусы приборов могут соединяться с заземлительным контуром напрямую с помощью кабеля.
В качестве основных деталей в контурах могут использоваться естественные и искусственные заземлители. К первому типу относятся:
- металлические корпуса зданий, соединённые с землёй;
- свинцовые оболочки кабелей, колодцев, скважин;
- подземные металлические коммуникации (кроме труб теплотрасс и магистралей для взрывчатых и горючих веществ).
Для отведения заряда от распределительных устройств и подстанций естественным путём обычно используются опоры отводящих воздушных линий электропередач. В качестве соединительных элементов в таких случаях выступают громозащитные тросы.
Когда возможность использования естественных элементов заземления отсутствует или они не дают нужного результата, их заменяют стержнями из угловой стали, стальными трубами или прутьями из стали.
Подключение дома к контуру заземления по системе TТ.
Для проведения такого подключения не требуется проводить разделений PEN проводника, фазный провод подключается к шине, изолированной от щита.
Подключается к шине, изолированной от щита совмещенный PEN проводник источника питания и дальше PEN считается просто нулевым проводом. Далее корпус щита подключается к контуру заземления дома.
На схеме видно, что контур заземления дома не имеет с PEN проводником электрической связи и если подключить заземление частного дома таким способом, то это имеет некоторые преимущества, по сравнению с подключением по системе TN-C-S.
К вашему заземлению будут подключены все потребители, в случае отгорания со стороны источника питания PEN проводника, что чревато негативными последствиями. А если ваше заземление связи с PEN проводником иметь не будет, то это гарантирует на корпусе электроприборов в доме — нулевой потенциал.
Бывает, что из-за неравномерной нагрузки по фазам (перекос фаз) появляется напряжение на нулевом проводнике, достигать которое может от 5 до 40 В. Когда существует связь между защитным проводником и нулем сети, то на корпусах быттехники в доме, тоже может возникать незначительный потенциал.
Должно сработать УЗО, если возникнет такая ситуация, но лучше на него не надеяться и до этой ситуации не доводить.
Можно сделать вывод из приведенных способов подключения контура заземления дома, что система заземления ТТ в частном доме более безопасна, но ее дороговизна является недостатком. Если применяется система ТТ, то должны обязательно устанавливаться защитные устройства, такие как УЗО и реле напряжения.
«Расчет заземляющих устройств»
Название второй программы говорит само за себя. Благодаря ей можно рассчитать не только контур заземления, но и молниезащиты, что также крайне необходимо. Интерфейс программки довольно простой, собственно, как и в рассмотренном выше аналоге. Выглядит форма для заполнения исходных данных следующим образом:
Если вам нужно выполнить простейший расчет заземляющего контура именно сейчас, можете воспользоваться нашим онлайн калькулятором расчета заземления. Точность вычислений конечно же уступает предоставленным в статье программным продуктам, однако все же приблизительные значения вы получите, на которые и стоит ориентироваться.