Область применения самодельного устройства

Изготовление механического терморегулятора в домашних условиях достаточно сложно и нерационально, поскольку результат будет работать в слишком широком диапазоне и не сможет обеспечить требуемой точности настройки. Чаще всего собирают самодельные электронные терморегуляторы, которые позволяют поддерживать оптимальный режим температуры тёплого пола, инкубатора, обеспечивать желаемую температуру воды в бассейне, нагрев парилки в сауне и т.д. Вариантов применения самодельного терморегулятора может быть столько, сколько систем, подлежащих настройке и регулировке температурного режима, имеется в доме. Для грубой настройки с помощью механических устройств проще приобрести готовые элементы, они недороги и вполне доступны.

Общее понятие о температурных регуляторах

Приборы, фиксирующие и одновременно регулирующие заданное температурное значение, в большей степени встречаются на производстве. Но и в быту они также нашли своё место. Для поддержания необходимого микроклимата в доме часто используются терморегуляторы для воды. Своими руками делают такие аппараты для сушки овощей или отопления инкубатора. Где угодно может найти своё место подобная система.

В данном видео узнаем что из себя представляет регулятор температуры:

https://youtube.com/watch?v=bXNiBuC6LSM

В действительности большинство терморегуляторов являются лишь частью общей схемы, которая состоит из таких составляющих:

  1. Датчик температуры, выполняющий замер и фиксацию, а также передачу к регулятору полученной информации. Происходит это за счёт преобразования тепловой энергии в электрические сигналы, распознаваемые прибором. В роли датчика может выступать термометр сопротивления или термопара, которые в своей конструкции имеют металл, реагирующий на изменение температуры и под её воздействием меняющий своё сопротивление.
  2. Аналитический блок – это и есть сам регулятор. Он принимает электронные сигналы и реагирует в зависимости от своих функций, после чего передаёт сигнал на исполнительное устройство.
  3. Исполнительный механизм – некое механическое или электронное устройство, которое при получении сигнала с блока ведёт себя определённым образом. К примеру, при достижении заданной температуры клапан перекроет подачу теплоносителя. И напротив, как только показания станут ниже заданных, аналитический блок даст команду на открытие клапана.

Как работает

Схема работы терморегулятора на примере теплого пола. (Для увеличения нажмите)

Принцип функционирования термостата достаточно прост, поэтому многие радиолюбители для оттачивания своего мастерства делают самодельные аппараты.

При этом можно использовать множество различных схем, хотя наиболее популярной является микросхема-компаратор.

Данный элемент имеет несколько входов, но всего один выход. Так, на первый выход поступает так называемое «Эталонное напряжение», имеющее значение установленной температуры. На второй же поступает напряжение уже непосредственно от термодатчика.

После этого, компаратор сравнивает эти оба значения. В случае, если напряжение с термодатчика имеет определенное отклонение от «эталонного», на выход посылается сигнал, который должен будет включить реле. После этого, подается напряжение на соответствующий нагревающий или охлаждающий аппарат.

Основные виды котлов и регулирование температуры

Существует несколько типов котлов: твердотопливные, газовые, электрические и работающие на жидком топливе.

Котлы получили широкое распространение по всему миру. Есть отечественные образцы, есть котлы и импортного изготовления. Материал изготовления сталь или чугун. Простой в эксплуатации, экономичный, с функцией регулировки температуры теплоносителя. В более дешёвых моделях эта функция реализуется с помощью специального устройства – термоэлемента.

Конструктивно термоэлемент представляет собой металлическое изделие, геометрические размеры которого под воздействием температур уменьшается либо увеличивается (в зависимости от степени нагрева). А от этого меняется, в свою очередь, положение специального рычага, который закрывает и открывает заслонку тяги. На фотографии показан образец такого регулятора:

Фото: образец терморегулятора

Чем больше открыта заслонка, тем сильнее процесс горения, и наоборот. Таким образом, объём воздуха, который поступает в камеру сгорания закрытого типа, полностью контролируется термостатом, и при необходимости его подача прекращается и процесс горения затухает. В более современных моделях установлены контроллеры, которые в зависимости от заданных тепловых режимов управляют потоком воздуха, включая (или отключая) специальный вентилятор (смотри фото ниже):

Котел с контроллером температуры

Газовые котлы — самые распространённые и дешёвые в эксплуатации агрегаты. Котлы бывают одноконтурные и двухконтурные. Одноконтурные котлы имеют один теплообменник и предназначены только для отопления. Схема включения представлена на рисунке ниже:

Схема включения одноконтурного котла

Двухконтурные котлы имеют два теплообменника и предназначены для отопления и получения горячей воды. Схема включения котла представлена ниже:

Схема включения двухконтурного котла

Некоторые котлы имеют отдельные регуляторы для температуры отопления и горячей воды.

Создаем простой терморегулятор

При ремонте бытовой электротехники вы могли сталкиваться с ситуацией, когда со строя выходил терморегулятор. Хоть это и небольшая микросхема, устанавливаемая для контроля величины нагрева или охлаждения чего-либо.

Увы, стоимость такого элемента заводского изготовления довольно высока, поэтому куда выгоднее собрать терморегулятор самому. Схема достаточно простого самодельного терморегулятора  приведена на рисунке ниже.

Рис. 5. Схема простейшего терморегулятора

Для его изготовления вам понадобится:

  • понижающий трансформатор с 220 на 12 В;
  • шесть диодов (в рассматриваемом примере используются IN4007);
  • конденсаторы на 47 мкФ, 1 мФ и 2 мФ;
  • микросхема для стабилизатора на 5В;
  • транзистор (в рассматриваемом примере это КТ814А);
  • стабилитрон с регулируемым параметром (TL431);
  • резистивные элементы на 4,7; 160, 150 и 910 кОм;
  • резистор с изменяемым сопротивлением на 150 кОм;
  • термозависимый резистор 50 кОм;
  • светодиод;
  • электромагнитное реле 100 мА с питающим напряжением 12В (в рассматриваемом примере используется автомобильный вариант);
  • кнопка и корпус.

Процесс изготовления состоит из таких этапов:

  • При помощи паяльника соберите вышеперечисленные детали на печатную плату, как показано на схеме выше.
  • После этого выведите измерительный орган для терморегулятора на открытое пространство, чтобы установить в нужную локацию.

Рис. 6. Выведите измерительный элемент

Установите переменный резистор на жесткий каркас и нанесите градуировку температурных режимов для настройки прибора.

Рис. 7. Установите регулятор на каркас и нанесите градуировку

На клеммник подключите шнур питания.

Подключите питающий шнур к клеммнику

В данном случае клеммник взят со старого прибора, располагавшегося в корпусе.

Подключите все отдельно размещенные элементы к плате и закройте корпусом.

После сборки терморегулятора его можно установить в любое место, к примеру, для обогрева и подключить в цепь питания электрического котла. В случае, когда радиаторы отопления нагреют помещение до установленной температуры, контакты реле разорвут цепь и прекратят электроснабжение. При остывании цифрового термометра, снова произойдет включение отопления и снова пойдет нагрев. Если вас не устраивает температурный режим, его можно изменить настройкой датчика.

Терморегуляторы повсеместно применяются в различных целях: в автомобилях, отопительных системах различного типа, холодильных камерах и печах. Их работа заключается в отключении или включении приборов после достижения определённой температуры. Простой механический терморегулятор своими руками сделать нетрудно. Современные конструкции имеют более сложную схему, но при некотором опыте можно сделать аналоги и таких стройств.

Детали устройства регулятора температуры своими руками

В роли датчика температуры обычно выступает терморезистор – элемент, электрическое сопротивление которого меняется в зависимости от температуры. Используют и полупроводниковые элементы – транзисторы и диоды, на характеристики которых температура также оказывает влияние: при нагреве увеличивается ток коллектора (у транзисторов), при этом наблюдается смещение рабочей точки и транзистор перестает работать, не реагируя на входной сигнал.

Между тем промышленность давно освоила выпуск недорогих термодатчиков, калибровка которых осуществляется в процессе изготовления.

К таковым относится прибор марки LM335 от компании National Semiconductor, которым мы и рекомендуем воспользоваться. Стоимость этого аналогового термодатчика составляет всего 1 доллар.

«Тройка» на первой позиции цифрового ряда в маркировке означает, что прибор ориентирован на применение в бытовой технике. Модификации LM235 и LM135 предназначены для использования, соответственно, в промышленности и в военной сфере.

Имея в своем составе 16 транзисторов, этот датчик работает как стабилитрон. При этом его напряжение стабилизации зависит от температуры.

Зависимость следующая: на каждый градус по абсолютной шкале (по Кельвину) приходится 0,01 В напряжения, то есть при нуле по Цельсию (273 по Кельвину) напряжение стабилизации на выходе составит 2,73 В. Производитель калибрует датчик по температуре в 25С (298К). Рабочий диапазон лежит в пределах от -40 до +100 градусов Цельсия.

Его можно рассчитать, используя несложную формулу:

Где Т – интересующая пользователя температура по шкале Цельсия.

Помимо термодатчика нам понадобится компаратор (подойдет марки LM311 от того же производителя), потенциометр для формирования эталонного напряжения (настройка требуемой температуры), выходное устройство для подключения нагрузки (реле), индикаторы и блок питания.

Терморегулятор — неотъемлемая часть автономного отопления. Термостат для котла отопления поможет поддерживать температуру в доме на комфортном уровне.

Принцип действия терморегулятора для инфракрасного обогревателя разберем тут .

Стоит ли устанавливать термостат для радиатора отопления? В этой статье http://microklimat.pro/otopitelnoe-oborudovanie/otopitelnye-pribory/termoregulyator-dlya-radiatora-otopleniya.html рассмотрим назначение прибора и виды и особенности монтажа.

Важные нюансы

Необязательно использовать микросхему К140УД6. Допускается задействовать аналоги Д2, Д7, Д8, Д12. Рекомендованный стабилитрон может быть заменен любым другим. Главное, чтобы мощность была в пределах от 11 и до 13 V.

FU1 тоже должен иметь большее значение. Чтобы обеспечить безопасное открывание и закрывание тринистора, выбирают резисторы R2 и R6.

С помощью данных элементов осуществляется и управление устройством. Терморезистор R5 могут иметь обозначение в пределах 10-51 кОм, а сопротивление резистора быть аналогичным.

Обязательно необходимо соблюдать технику безопасности. Выводы терморегуляторов, которые предназначены для работы во влажной либо водянистой среде, должны быть герметично изолированными.

Немного теории

Простейшие измерительные датчики, в том числе и реагирующие на температуру, состоят из измерительного полуплеча из двух сопротивлений, опорного и элемента, меняющего свое сопротивление в зависимости от прилаживаемой к нему температуры. Более наглядно это представлено на картинке ниже.

Как видно из схемы, резистор R2 является измерительным элементом самодельного терморегулятора, а R1, R3 и R4 опорным плечом устройства. Это терморезистор. Он представляет собой проводниковый прибор, который изменяет своё сопротивление при изменении температуры.

Элементом терморегулятора, реагирующим на изменение состояния измерительного плеча, является интегральный усилитель в режиме компаратора. Данный режим переключает скачком выход микросхемы из состояния выключено в рабочее положение. Таким образом, на выходе компаратора мы имеем всего два значения «включено» и «выключено». Нагрузкой микросхемы является вентилятор для ПК. При достижении температуры определенного значения в плече R1 и R2 происходит смещение напряжения, вход микросхемы сравнивает значение на контакте 2 и 3 и происходит переключение компаратора. Вентилятор охлаждает необходимый предмет, его температура падает, сопротивление резистора меняется и компаратор отключает вентилятор. Таким образом поддерживается температура на заданном уровне, и производится управление работой вентилятора.

Принцип работы терморегулятора и его виды

Само по себе устройство имеет простую конструкцию:

  • корпус для подключения к запорной арматуре или обогревателю;
  • датчик (при необходимости);
  • головка, заполненная реагирующим на температуру веществом;
  • система клапанов.

В качестве реагирующего вещества ранее использовался парафин, сейчас – жидкость или газ. В результате нагревания свойства материала внутри головки меняются, и механическим образом происходит открытие или закрытие заслонки, регулирующей поток теплоносителя. Можно также при помощи встроенной пружины установить температуру сработки клапана. Терморегуляторы могут устанавливаться на обогреватель, либо устанавливаться в котельной и управлять за счет получения температуры, проходящей сквозь них жидкости.

В результате установки устройства происходит автоматическое регулирование температуры обогревателя путем регулировки потока теплоносителя. Необходимо лишь 1 раз задать температуру, и процесс дальше будет работать без участия человека.

Стоит отдельно упомянуть о типах материалов, реагирующих на тепло:

  1. Парафин – практически не используется сейчас. Главная причина – парафин не стабилен, и работают такие термоголовки не более 2-5 лет. Принцип работы первых терморегуляторов был основан на том, что поплавок находился над парафином, как только температура в помещении росла, он проваливался из-за полученной пластичности парафина, тем самым регулируя температуру.
  2. Специальная термостатическая жидкость – ее недостаток – скорость реакции на изменение температуры в помещении от 15 до 40 минут. Тем не менее, такие головки имеют доступную стоимость и позволяют существенно экономить на отоплении .
  3. Термостатический газ – скорость реакции на изменение температуры в помещении – 2-3 минуты, однако имеют высокую стоимость и остаются достаточно капризными и требовательными к себе.

Предназначение

Учитывая стоимость молодняка птицы в продаже, многие фермеры стараются выводить птенцов уточек, курочек и гусят собственными силами. Это не составляет особых проблем. Всё что нужно – инкубатор и оплодотворённые яйца. Ещё потребуются познания об инкубационном периоде птицы, которую вы выбрали. Самое главное в этом процессе, это правильно выдерживать температуру. Этот фактор более всего влияет на развитие зародыша и время появления птенцов. При правильном соблюдении температурного режима, птенцы появятся в назначенное время и будут расти здоровыми и крепкими.

самодельный терморегулятор

Температура инкубационного периода для каждого вида птиц различна:

Для развития зародышей курей необходима температура 37,7 градусов Цельсия.

Что бы гусиные яйца созрели точно в срок, используется другой, более сложный, режим. Причиной этому является сильных нагрев яиц в процессе инкубации. Для того чтобы не допустить перегрева яиц и используют регулятор температур, согласно схеме.

Современной наукой достигнуты результаты определения температуры до 0,1 градуса по Цельсию. Такой точностью обладают цифровые терморегуляторы, а вот у других видов регуляторов диапазон погрешности более велик. Самой главной частью прибора является нагревательный элемент.

Необходимо установить нужный вам уровень температуры и когда температура начнёт подниматься сработает датчик отключения. Тот же принцип используется и при уменьшении температуры, срабатывают термодатчики и воздух снова прогревается. Большое значение имеет окружающая среда в месте, где находится инкубатор.

Необходим постоянный приток свежего воздуха, а комнатная температура не должна превышать 25 градусов Цельсия. При попадании солнечных лучей на регулятор температуры могут быть ошибочные показания, поэтому инкубатор лучше держать подальше от солнца, как показано на фото.

Самими важными являются первые дни закладки яиц. Именно в это время нужно строжайшим образом соблюдать температурный режим. Стоит хотя бы немного яйцу перегреться, эмбрион сразу же погибает или получает непоправимые мутации. При правильном соблюдении температуры, качественных яйцах, нормальном развитии эмбриона, во второй половине развития зародыша он сам будет подстраиваться под необходимую температуру и на свет появятся здоровые птенцы.

Весь процесс зарождения птенчиков в целом и полностью зависит от температуры, а это значит и от терморегулятора. В случае малейшего нарушения режима температуры, птенцы могут не появиться совсем или прожить очень недолго. При достаточном внимании и заботе с вашей стороны, они вас порадуют весёлыми голосами и отменным здоровьем.

Понятие о температурных регуляторах

Изделия этой категории применяют для решения разных задач. По соответствующей настройке температурного порога подают питание (отключают):

  • отопление в погребе;
  • нагрев паяльной станции;
  • циркуляционный насос котла.

Из приведенных примеров понятны базовые требования к точности, которую должна обеспечить подходящая схема терморегулятора. В некоторых ситуациях необходимо поддержание заданного уровня не ниже, чем ±1C°. Для контроля рабочих параметров нужна оперативная индикация. Существенное значение имеют нагрузочные способности.

Перечисленные особенности поясняют назначение типовых функциональных узлов:

  • значение температуры фиксируют специализированным датчиком (резистором, термопарой);
  • показания анализирует микроконтроллер или другое устройство;
  • исполнительный сигнал поступает на электронный (механический) переключатель.

К сведению. Кроме рассмотренных частей, схема термореле может содержать дополнительные компоненты для подачи питания на электронагреватель, другую мощную нагрузку.

Регулятор температуры своими руками: питание и нагрузка

Что касается подключения LM 335 то оно должно быть последовательным. Все сопротивления необходимо подобрать так, чтобы общая величина тока, который проходит через термодатчик соответствовала показателям от 0,45 мА до 5 мА. Превышения отметки допускать нельзя, так как датчик будет перегреваться, и показывать искаженные данные.

Запитка терморегулятора может происходить несколькими способами:

  • С помощью блока питания с ориентировкой на 12 В;
  • С помощью любого другого устройства, питание которого не превышает вышеуказанный показатель, но при этом ток, протекающий через катушку не должен превышать 100 мА.

Еще раз напомним о том, что показатель тока в цепи датчика не должен превышать 5 мА, по этой причине придется использовать транзистор с большой мощностью. Лучше всего подойдет КТ 814. Конечно, если вы хотите избежать применения транзистора, можно использовать реле с меньшим уровнем тока. Он сможет работать от напряжения в 220 В.

Новая технология

На отечественном рынке терморегуляторы начали появляться около 10 лет назад, и пришли на смену обычным кранам и вентилям, которые просто перекрывали условный проход теплоносителя. Недостаток такой конструкции заключается в том, что регулируя количество теплоносителя, который попадает в радиатор, вы не можете надолго управлять температурой в помещении. Если у электрического котла более-менее стабильная работа, то у твердотопливного котла диапазон температуры очень высокий, и зависит от интенсивности реакции горения. В этом случае в комнатах температура будет то выше, то ниже, и комфорт для жителей будет сомнительным.

Существует еще один важный момент, с которого началось активное внедрение термостатов – работа вместе с теплым полом. Сейчас теплые полы – это норма строительства, и правильно спроектированная система отопления – это комбинированная система, которая состоит из отопления от теплого пола и отопления от радиатора. При этом для контура теплого пола температура должна быть на уровне 20-25 градусов Цельсия, а для отопления через радиаторы – от 50 градусов.

Активное внедрение термостатов началось с установки теплых полов

Как же бить в таком случае, учитывая, что и теплый пол, и радиаторы работают от одного котла? Ответ – использовать терморегулятор. Кран в таком случае не решит проблему с подачей очень горячей воды в контур теплого пола. Простой способ справиться с распределением отопления – установить на входе в коллектор теплого пола терморегулятор, либо же использовать терморегуляторы на каждый контур отопления.

Процесс изготовления

Важно помнить, что в цепи сила тока не должна быть больше 5 мА, именно поэтому, чтобы подключить термореле, используется транзистор большой мощнос

Итак, рассмотрим процесс самостоятельного изготовления простого терморегулятора на 12 В, имеющего датчик температуры воздуха.

Все должно происходить следующим образом:

  1. Сначала необходимо подготовить корпус. Лучше всего в этом качестве использовать старый электрический счетчик, такой, как «Гранит-1»;
  2. На базе этого же счетчика более оптимально собирать и схему. Для этого, к входу компаратора (он обычно помечен «+») нужно подключить потенциометр, который дает возможность задавать температуру. К знаку «-», обозначающему инверсный вход, нужно присоединить термодатчик LM335. В этом случае, когда напряжение на «плюсе» будет больше, чем на «минусе», на выход компаратора будет отправлено значение 1 (то есть высокое). После этого регулятор отправит питание на реле, которое в свою очередь включит уже, например, котел отопления. Когда напряжение, поступающее на «минус» будет больше, чем на «плюсе», на выходе компаратора снова будет 0, после чего отключится и реле;
  3. Для обеспечения перепада температур, иными словами для работы терморегулятора, допустим при 22 включение, а при 25 отключение, нужно, используя терморезистор, создать между «плюсом» компаратора и его выходом, обратную связь;
  4. Чтобы обеспечить питание, рекомендуется делать трансформатор из катушки. Её можно взять, к примеру, из старого электросчетчика (он должен быть индуктивного типа). Дело в том, что на катушке можно сделать вторичную обмотку. Для получения желанного напряжения в 12 В, будет достаточно намотать 540 витков. При этом, чтобы они уместились, диаметр провода должен составлять не более 0.4 мм.

Совет мастера: чтобы включить нагреватель, лучше всего применять клеммник счетчика.

Принцип работы терморегулятора

Терморегулятор — это устройство, способное реагировать на изменения температурного режима. По типу действия различают терморегуляторы триггерного типа, отключающие или включающие нагрев при достижении заданного предела, или устройства плавного действия с возможностью тонкой и точной настройки, способные контролировать изменения температуры в диапазоне долей градуса.

Существуют две разновидности терморегуляторов:

  1. Механический. Представляет собой устройство, использующее принцип расширения газов при изменении температуры, или биметаллические пластины, изменяющие свою форму от нагревания или охлаждения.
  2. Электронный. Состоит из основного блока и датчика температуры, подающего сигналы об увеличении или понижении заданной температуры в системе. Используется в системах, требующих высокой чувствительности и тонкой регулировки.

Механические устройства не позволяют обеспечить высокой точности настройки. Они являются одновременно и датчиком температуры, и исполнительным органом, объединёнными в единый узел. Биметаллическая пластина, используемая в нагревательных устройствах, представляет собой термопару из двух металлов с разным коэффициентом теплового расширения.

Главное предназначение терморегулятора — автоматическое поддержание необходимой температуры

Нагреваясь, один из них становится больше другого, отчего пластина изгибается. Контакты, установленные на ней, размыкаются и прекращают нагрев. При охлаждении пластина возвращается в изначальную форму, контакты вновь замыкаются и нагрев возобновляется.

Камера с газовой смесью — чувствительный элемент термостата холодильника или отопительного терморегулятора. При изменениях температуры меняется объём газа, что вызывает перемещение поверхности мембраны, соединённой с рычагом контактной группы.

В терморегуляторе для отопления используется камера с газовой смесью, работающая по закону Гей-Люссака — при изменении температуры меняется объём газа

Механические термостаты надёжны и обеспечивают устойчивую работу, но настройка режима работы происходит с большой погрешностью, практически «на глазок». При необходимости тонкой настройки, обеспечивающей регулировку в пределах нескольких градусов (или ещё тоньше), используются электронные схемы. Датчиком температуры для них служит терморезистор, способный различить мельчайшие изменения режима нагрева в системе. Для электронных схем ситуация обратная — чувствительность датчика слишком высока и её искусственно загрубляют, доводя до пределов разумного. Принцип действия состоит в изменении сопротивления датчика, вызванном колебаниями температуры контролируемой среды. Схема реагирует на смену параметров сигнала и повышает/понижает нагрев в системе до получения другого сигнала. Возможности электронных блоков контроля намного выше и позволяют получить настройку температуры любой точности. Чувствительность таких термостатов даже избыточна, поскольку нагрев и охлаждение — процессы, обладающие высокой инерционностью, которые замедляют время реакции на смену команд.

Схема с логической микросхемой

Эта схема отличается от предыдущей тем, что вместо стабилитрона в ней задействована логическая микросхема К561ЛА7. Датчиком температуры по-прежнему служит терморезистор (обозначение – VDR1), только теперь решение о замыкании цепи принимает логический блок микросхемы. Кстати, марка К561ЛА7 производится еще с советских времен и стоит сущие копейки.

Для промежуточного усиления импульсов задействован транзистор КТ315, с той же целью в конечном каскаде установлен второй транзистор – КТ815. Данная схема соответствует левой части предыдущей, силовой блок здесь не показан. Как нетрудно догадаться, он может быть аналогичным – с симистором КУ208Г. Работа такого самодельного термореле проверена на котлах ARISTON, BAXI, Дон.

2 Простой электронный прибор

Для более точной работы автоматического регулятора температуры без электронных комплектующих не обойтись. Самые простые терморегуляторы работают по схеме на основе реле.

Основными элементами такого устройства являются:

  • пороговая схема;
  • индикаторное устройство;
  • датчик температуры.

Схема самодельного термостата должна реагировать на повышение (понижение) температуры и включать исполнительное устройство или приостанавливать его работу. Для реализации самой простой схемы следует использовать биполярные транзисторы. Термореле сделано по типу триггера Шмидта. Терморезистор будет выполнять функцию датчика температуры. Он будет изменять сопротивление в зависимости от температуры, которая настраивается в общем блоке управления.

Но кроме терморезистора, термодатчиком могут выступать:

  • термисторы;
  • полупроводниковые элементы;
  • термометры сопротивления;
  • биметаллические реле;
  • термопары.

Перед началом работ нужно определиться с температурным диапазоном устройства, а также его мощностью. Нужно учитывать, что для холодильника будут применяться одни комплектующие, а для отопительного оборудования — другие.

Преимущества и недостатки

Самодельный терморегулятор обладает определёнными достоинствами и недостатками. Плюсами устройства являются:

  • Высокая ремонтопригодность. Терморегулятор, сделанный самостоятельно, легко отремонтировать, поскольку его конструкция и принцип работы известны до мелочей.
  • Расходы на создание регулятора намного ниже, чем при покупке готового блока.
  • Существует возможность изменения рабочих параметров для получения более подходящего результата.

К недостаткам следует отнести:

  • Сборка такого устройства доступна только людям, имеющим достаточную подготовку и определённые навыки работы с электронными схемами и паяльником.
  • Качество работы устройства в большой степени зависит от состояния использованных деталей.
  • Собранная схема требует настройки и юстировки на контрольном стенде или с помощью эталонного образца. Получить сразу готовый вариант устройства невозможно.

Основной проблемой является необходимость подготовки или, как минимум, участие специалиста в процессе создания прибора.

Назначение терморегуляторов

Любой электрический или газовый котел оборудован комплектом автоматики, отслеживающей нагрев теплоносителя на выходе из агрегата и отключающей основную горелку при достижении заданной температуры. Снабжены подобными средствами и твердотопливные котлы. Они позволяют поддерживать температуру воды в определенных пределах, но не более того.

При этом климатические условия в помещениях или на улице не учитываются. Это не слишком удобно, домовладельцу приходится постоянно подбирать подходящий режим работы котла самостоятельно. Погода может изменяться в течении дня, тогда в комнатах становится жарко либо прохладно. Было бы гораздо удобнее, если автоматика котла ориентировалась на температуру воздуха в помещениях.