Электроемкость

Электроемкость — это скалярная величина, характеризующая способность проводника накапливать электрический заряд.

Электроемкость:

  • не зависит от q и U;
  • зависит от геометрических размеров проводника, их формы, взаимного расположения, электрических свойств среды между проводниками.

Электрической емкостью проводника наз. отношение заряда проводника к его потенциалу:

единица измерения емкости в СИ: Ф (фарад)

Конденсатор обладает свойством накапливать и сохранять электрическую энергию. Конденсатор представляет собой систему из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников.  Проводники наз. обкладками  конденсатора. Если заряды пластин конденсатора одинаковы по модулю и противоположны по знаку, то  под зарядом конденсатора понимают абсолютное значение заряда одной из его обкладок.

Электроемкостью конденсатора называют отношение заряда конденсатора к разности потенциалов между обкладками.  Основные слагаемые электроемкости представлены на рисунке ниже:

Основные слагаемые электроемкости.

Обозначение на электрических схемах:

  • Все электрическое поле сосредоточено внутри конденсатора.
  • Заряд конденсатора — это абсолютное значение заряда одной из обкладок конденсатора.

Виды конденсаторов:

  • по виду диэлектрика — воздушные, слюдяные, керамические, электролитические.
  • по форме обкладок — плоские, сферические.
  • по величине емкости — постоянные, переменные (подстроечные).

Электроемкость.

Электроемкость плоского конденсатора

где S — площадь пластины (обкладки) конденсатора

  • d — расстояние между пластинами
  • εо — электрическая постоянная

ε — диэлектрическая проницаемость диэлектрика

Конденсатор — это система заряженных тел обладает энергией.

Энергия любого конденсатора:

где С — емкость конденсатора, (Ф)                     W— энергия (Дж) q — заряд конденсатора, (Кл) U — напряжение на обкладках конденсатора, (В

Энергия равна работе, которую совершит электрическое поле при сближении пластин конденсатора вплотную, или работе по разделению положительных и отрицательных зарядов необходимой при зарядке конденсатора. Конденсаторы применяются для накопления электрической энергии и использования ее при быстром разряде (фотовспышка), для разделения цепей постоянного и переменного тока, в радиотехнике: колебательный контур, выпрямитель и других радиоэлектронных устройствах.

Конденсатор переменной емкости

Конденсаторы, емкость которых можно менять, называются конденсаторами переменной емкости.

Наиболее простой конденсатор переменной емкости имеет несколько (реже один) медных или алюминиевых полудисков, соединенных между собой электрически и укрепленных неподвижно. Другой ряд таких же полудисков собран на общей оси. При повороте этой оси каждый из укрепленных на ней полудисков входит меду двумя неподвижными полудисками. Поворачивая ось и меняя таким образом взаимное расположение подвижных и неподвижных полудисков, мы можем менять емкость конденсатора. На рисунке 3 показана схема устройства и на рисунке 4 – общий вид воздушного конденсатора переменной емкости.

Рисунок 3. Схема устройства конденсатора переменной емкости

Рисунок 4. Общий вид конденсатора переменной емкости

Видео об устройстве серийного конденсатора переменной емкости:

Видео о том, как можно сделать самодельный конденсатор переменной емкости своими руками:

https://youtube.com/watch?v=DKNN_OA_LYQ

Видео о том, как можно сделать самодельный конденсатор переменной емкости своими руками:

Примечания

  1. Шакирзянов Ф. Н. // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 28—29. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
  2. Jackson, J. D. Classical Electrodynamics (неопр.). — Wiley, 1975. — С. 80.
  3. Binns; Lawrenson. Analysis and computation of electric and magnetic field problems (англ.). — Pergamon Press (англ.)русск., 1973. — ISBN 978-0-08-016638-4.
  4. Maxwell, J. C. A Treatise on Electricity and Magnetism (неопр.). — Dover, 1873. — С. 266 ff. — ISBN 0-486-60637-6.
  5. Jackson, J. D. Classical Electrodynamics (неопр.). — Wiley, 1975. — С. 128, problem 3.3.
  6. Vainshtein, L. A. Static boundary problems for a hollow cylinder of finite length. III Approximate formulas (англ.) // Zh. Tekh. Fiz. : journal. — 1962. — Vol. 32. — P. 1165—1173.
  7. , с. 509.

Определение электроконденсатора

Это электротехническое устройство, основное назначение которого заключается в моментальном накоплении, хранении и передаче электроэнергии. В схемотехнике конденсаторы имеют самое различное целевое назначение. Например:

  1. Применяются для компенсации реактивной мощности, возникающей ввиду индуктивности линий передач электроэнергии. Для этих целей используются очень мощные конструкции, отличающиеся немалыми габаритами.
  2. В схему электрооборудования они включаются для компенсации и выравнивания электрического тока. Они применяются в бытовых и промышленных преобразователях электропитания, передатчиках, цифровых устройствах.

Использование конденсаторов позволяет снизить уровень пульсации напряжения и обеспечивает его фильтрацию, что чрезвычайно важно для высокоточного электронного оборудования. Их применение также позволяет компенсировать просадку электротока, кратковременно возникающую при включении потребителей

Конструктивно устройство состоит из обкладок, окружённых слоями диэлектрического материала. Основными свойствами электроконденсаторов является их ёмкость и номинальное напряжение. Постараемся разобраться в них поподробнее.

Маркировка на конденсаторах

Знать характеристики электронных приборов требуется для точной и безопасной работы.

Определение ёмкости конденсатора включает измерение величины приборами и чтение маркировки на корпусе. Обозначенные значения и полученные при измерениях отличаются. Это вызвано несовершенством производственных технологий и эксплуатационным разбросом параметров (износ, влияние температур).

На корпусе указана номинальная емкость и параметры допустимых отклонений. В бытовых устройствах используют приборы с отклонением до 20%. В космической отрасли, военном оборудовании и в автоматике опасных объектов разрешают разброс характеристик в 5-10%. Рабочие схемы не содержат значений допусков.

Номинальная емкость кодируется по стандартам IEC — Международной электротехнической комиссии, которая объединяет национальные организации по стандартам 60 стран.

Стандарт IEC использует обозначения:

  1. Кодировка из 3 цифр. 2 знака в начале — количество пФ, третий — число нулей, 9 в конце — номинал меньше 10 пФ, 0 спереди — не больше 1 пФ. Код 689 — 6,8 пФ, 152 — 1500 пФ, 333 — 33000 пФ или 33 нФ, или 0,033 мкФ. Для облегчения чтения десятичная запятая в коде заменяется буквой “R”. R8=0,8 пФ, 2R5 — 2,5 пФ.
  2. 4 цифры в маркировке. Последняя — число нулей. 3 первых — величина в пФ. 3353 — 335000 пФ, 335 нФ или 0,335 мкФ.
  3. Использование букв в коде. Буква µ — мкФ, n — нанофарад, p — пФ. 34p5 — 34,5 пФ, 1µ5 — 1,5 мкФ.
  4. Планерные керамические изделия кодируют буквами A-Z в 2 регистрах и цифрой, обозначающей степень числа 10. K3 — 2400 пФ.
  5. Электролитические SMD приборы маркируются 2 способами: цифры — номинальная емкость в пФ и рядом или во 2 строчке при наличии места — значение номинального напряжения; буква, кодирующая напряжение и рядом 3 цифры, 2 определяют емкость, а последняя — количество нулей. А205 значит 10 В и 2 мкФ.
  6. Изделия для поверхностного монтажа маркируются кодом из букв и чисел: СА7 — 10 мкФ и 16 В.
  7. Кодировки — цветом корпуса.

Маркировка IEC, национальные обозначения и кодировки брендов делают запоминание кодов бессмысленным. Разработчикам аппаратуры и мастерам-ремонтникам требуются справочные источники.

Вычисление с помощью формул

Вычисление номинальной емкости элемента требуется в 2 случаях:

  1. Конструкторы электронной аппаратуры рассчитывают параметр при создании схем.
  2. Мастера при отсутствии конденсаторов подходящей мощности и емкости используют расчет элемента для подбора из доступных деталей.

RC цепи рассчитывают с применением величины импеданса — комплексного сопротивления (Z). Rа — потери тока на нагревание участников цепи. Ri и Rе — учитывают влияние индуктивности и ёмкости элементов. На выводах резистора в RC цепи напряжение Uр обратно пропорционально Z.

Тепловое сопротивление увеличивает потенциал на нагрузке, а реактивное уменьшает. Работа конденсатора на частотах выше резонансных, когда растет реактивная составляющая комплексного сопротивления, приводит к потерям напряжения.

Частота резонанса обратно пропорциональна способности накапливать заряд. Из формулы для определения Fр вычисляют, какие значения Ск (емкости конденсатора) требуются для работы цепи.

Для расчета импульсных схем используют постоянную времени цепи, определяющую воздействие RC на структуру импульса. Если знают сопротивление цепи и время заряда конденсатора, по формуле постоянной времени вычисляют емкость. На истинность результата влияет человеческий фактор.

Мастера используют параллельные и последовательные соединения конденсаторов. Формулы расчета обратны формулам для резисторов.

Последовательное соединение делает емкость меньше меньшей в соединении элементов, параллельная схема суммирует величины.

Основные разновидности конденсаторов ёмкости

Для начала стоит разобраться с типами устройств. Итак, конденсаторы бывают:

  1. Постоянной и переменной ёмкости.
  2. Поляризованными. Их часто называют электролитическими или электролитами.
  3. Подстроечными.

Для указания номинала устройство применяются следующие обозначения:

  • микрофарады;
  • нанофарады;
  • пикофарады.

По типу изготовления устройства для накопления ёмкости электрического тока разделяются на следующие:

  • бумажные;
  • керамические термоустойчивые литые, дисковые, секционные и трубчатые;
  • малогабаритные подстроечные из керамики;
  • герметизированные металлобумажные в один или несколько слоёв;
  • слюдяные;
  • полистироловые;
  • плёночные.

От их типа напрямую зависит область применения и эксплуатационные свойства.

Что такое емкость?

Если удалить одиночный электропроводник бесконечно далеко, исключить влияние заряженных тел друг на друга, то потенциал удаленного проводника станет пропорционален заряду. Но у отличающихся по размеру проводников потенциалы не совпадают.

Единицей емкости конденсатора в СИ является фарад. Коэффициент пропорциональности обозначают буквой С — это емкость, на которую влияет размер и внешняя структура проводника. Материал, фазовое состояние вещества электрода роли не играют — заряды распределяются на поверхности. Поэтому в международных правилах СГС ёмкость измеряется не в фарадах, а в сантиметрах.

Уединенный шар радиусом 9 млн км (1400 радиусов Земли) содержит 1 фарад. Отдельный проводящий элемент удерживает заряды в недостаточных для применения в технике количествах. По технологиям XXI в. создается ёмкость конденсаторов с единицами измерений выше 1 фарада.

Накапливать требуемое для работы электронных схем количество электричества способна структура из минимум 2 электродов и разделяющего диэлектрика. В такой конструкции положительные и отрицательные частицы взаимно притягиваются и сами себя держат. Диэлектрик между электронно-позитронной парой не допускает аннигиляции. Подобное состояние зарядов называется связанным.

Раньше для измерения электрических величин применяли громоздкое оборудование, не отличающееся точностью. Теперь, как измерить ёмкость тестером, знает даже начинающий радиолюбитель.

Электрическая емкость конденсатора

Дальнейшие опыты с распределением электричества по поверхности наэлектризованного проводника, проводимые Кулоном и другими естествоиспытателями, позволили установить, что равномерное распределение электричества имеет место только на правильной шаровой поверхности. В общем случае заряд неравномерен и зависит от формы проводника, будучи больше в местах большей кривизны. Отношение количества электричества на части поверхности проводника к величине этой поверхности назвали плотностью (толщиной) электрического слоя. Экспериментально было установлено, что электрическая плотность и электрическая сила особенно велики в местах поверхности, имеющих наибольшую кривизну, особенно на остриях.

Величину, характеризующую зависимость потенциала наэлектризованного проводника от его размеров, формы и окружающей среды, называют электроемкостью проводника и обозначают буквой С. Электроемкость проводника измеряется количеством электричества, необходимым для повышения потенциала этого проводника на единицу:

С = q/ϕ.

За единицу электроемкости в системе СИ принимается 1 фарада (1 Ф). Фарадой называется электроемкость проводника, которому для повышения его потенциала на один вольт нужно сообщить один кулон электричества. Электроемкостью, равной 1 Ф, обладал бы шар радиусом 9·10 6 км, что в 23 раза больше расстояния от Земли до Луны. Если проводник соединить с источником электричества определенного потенциала, то проводник получит электрический заряд, зависящий от емкости проводника. Его емкость, а, следовательно, и количество электричества, которым он заряжается, увеличиваются, если приблизить к нему второй проводник, соединенный с землей.

Конструкция, состоящая из двух проводников, разделенных изолятором, с электрическим полем между ними, все силовые линии которого начинаются на одном проводнике, а заканчиваются на другом, была названа электрическим конденсатором. При этом оба проводника называются обкладками, а изолирующая прокладка – диэлектриком. Процесс накопления зарядов на обкладках конденсатора называется его зарядкой. При зарядке на обеих обкладках накапливаются равные по величине и противоположные по знаку заряды.

Поскольку электрическое поле заряженного конденсатора сосредоточено в пространстве между его обкладками, то электроемкость конденсатора не зависит от окружающих тел. Электроемкость конденсатора измеряется отношением количества электричества на одной из обкладок к разности потенциалов между обкладками:

С = q/ U.

1 Ф – электроемкость такого конденсатора, который может быть заряжен количеством электричества, равным 1 Кл, до разности потенциалов между обкладками, равной 1 В. Например, электрическая емкость плоского конденсатора в системе СИ определяется по соотношению:

С =εε 0 S/ d, где ε – диэлектрическая проницаемость материала, находящегося между обкладками конденсатора; ε 0 – диэлектрическая проницаемость вакуума; S – величина площади поверхности пластины (меньшей, если они не равны); d – расстояние между пластинами.

Если обкладки заряженного конденсатора соединить проводником, то заряды будут переходить с одной обкладки на другую и нейтрализуют друг друга. Этот процесс называется разрядкой конденсатора. Каждый конденсатор рассчитан на определенное напряжение. Если напряжение между обкладками станет слишком большим, то разрядка может произойти и непосредственно через диэлектрик (без соединительного проводника), т.е. получится пробой диэлектрика.

Пробитый конденсатор к дальнейшему употреблению не пригоден. Для получения электроемкости нужной величины конденсаторы соединяют в батарею. На практике встречается как параллельное, так и последовательное соединение конденсаторов.

Строение конденсатора.

Порядок включение устройств в схему

При использовании неполяризованных конденсаторов важно только соблюдение их номинала — порядок их установки относительно полюсов значения не имеет. К поляризованным конденсаторам применяются следующие правила включения в схему:

К поляризованным конденсаторам применяются следующие правила включения в схему:

  1. Параллельное соединение. Выполняется «плюс к плюсу». При таком способе подключения итоговая ёмкость группы будет равняться сумме ёмкостей всех находящихся в батарее элементов.
  2. Последовательное соединение. Такой способ соединения позволяет многократно повысить рабочее напряжение группы. Однако стоит учитывать, что номинальная ёмкость в итоге окажется меньше самого слабого элемента. Для её расчёта следует воспользоваться специальной формулой.

Наибольшее распространение в электротехнике получили электролитические конденсаторы — электролиты. Они успешно используются для производства комплектующих, аудио и видеотехники, прочих цифровых устройств.

Прочие способы измерения

Измеритель емкости конденсаторов своими руками собирают по схемам импульсных устройств. Последовательности RC цепей с переменными резисторами создают на выходе изделия серии сигналов со ступенчатым изменением частоты. Для наладки устройства используют мультиметр, с которым будет применяться приставка.

Набор проверенных конденсаторов поочередно подключают к конструкции и настраивают точность работы в каждом поддиапазоне.

Измеритель ёмкости полярных электролитических элементов своими руками схематически реализуется и настраивается, как часть приставки без колебательного контура. На выходе вместо импульсного — постоянное напряжение.

В цифровых измерителях ёмкости источник питания — высокостабильный. “Плавающие” параметры элементов, из которых собирается схема, дадут неприемлемую для точности измерений погрешность.

На логических элементах создаются источники переменного импульсного тока для замеров ESR.

Недорогие приборы для измерения емкости конденсатора, типа мостовых RLC устройств с дополнительной функцией проверки SMD сопротивлений, сетевой зарядкой и жидкокристаллическим дисплеем, сами размером с палец. Выполняют функции профессионального метрологического комплекса. Способны выступать в роли измерителя емкости электролитических конденсаторов, как полярных, так и переменных.

Определение

Для проводников электрической ёмкостью называется величина, которая характеризует способность тела накапливать электрический заряд. Это и есть её физический смысл. Обозначается латинской буквой C. Она равна отношению заряда к потенциалу, если это записать в виде формулы, то получается следующее:

C=q/Ф

Электроемкость любого предмета зависит от его формы и геометрических размеров. Если рассмотреть проводник в форме шара, в качестве примера, то формула для расчета её величины будет иметь вид:

Эта формула справедлива для уединенного проводника. Если расположить рядом два проводника и разделить их диэлектриком, тогда получится конденсатор. Об этом немного позже, сейчас давайте разберемся, в чем измеряется электроемкость.

Единица измерения электрической ёмкости — фарад. Если разложить её на составляющие согласно формуле то:

1 фарад =1 Кл/1 В

Исторически сложилось так, что размерность этой единицы выбрана не совсем верно. Дело в том, что на практике приходится работать с величинами электроемкости: мили-, микро-, нано- и пикофарад. Что равняется долям фарада, а именно:

1 мФ = 10^(-3) Ф

1 мкФ = 10^(-6) Ф

1 нФ = 10^(-9) Ф

1 пФ = 10^(-12) Ф

Конденсатор постоянной емкости

Конденсаторы, емкость которых изменять нельзя, называются конденсаторами постоянной емкости.

Рисунок 2. Схема устройства конденсаторапостоянной емкости

Наиболее распространенные в настоящее время конденсаторы постоянной емкости состоят из очень тонких металлических (станиолевых) листов с парафинированной бумажной или слюдяной прослойкой между ними.

Для увеличения емкости (увеличения площади пластин конденсатора) чаще всего берут по нескольку станиолевых листов и соединяют их в две группы, входящие одна в другую и разделенные диэлектриком, как схематически показано на рисунке 2. Иногда также берут две длинные станиолевые пластины, прокладывают между ними и снаружи парафинированную бумагу и затем свертывают все в компактный пакет или трубку. Конденсаторы большой емкости во многих случаях помещают в металлическую коробку и заливают парафином.

Рисунок 3. Внешний вид современных конденсаторов постоянной емкости

Определим емкость плоского конденсатора. Возьмем произвольную замкнутую поверхность вокруг одной из пластин конденсатора. Тогда по теореме Гаусса поток вектора напряженности, проходящий через любую замкнутую поверхность, внутри которой находится электрический заряд, равен:

(1)

Предполагая, что поле конденсатора однородно (пренебрегая искажением поля у краев пластин), получаем напряженность электрического поля в конденсаторе:

(2)

где d – расстояние между пластинами или толщина диэлектрика. Подставив значение E из формулы (2) в формулу (1), получим:

откуда

Так как

то выражение емкости плоского конденсатора примет вид:

где S – площадь пластин в м²; d – толщина диэлектрика в м; ε – относительная электрическая проницаемость диэлектрика (диэлектрическая проницаемость).

Таким образом, для увеличения емкости плоского конденсатора нужно увеличить площадь его пластин (обкладок) S, уменьшить расстояние между ними d и в качестве диэлектрика поставить материал с большой относительной электрической проницаемостью (ε).

Видео об устройстве конденсатора постоянной емкости:

Как измерить ёмкость конденсатора мультиметром?

Измеряя параметры, конденсатор предварительно разряжают, замкнув выводы между собой отверткой с изоляцией на ручке. Если этого не сделать, маломощный мультиметр выйдет из строя.

Ответ на вопрос, как проверить емкость конденсатора мультиметром с режимом “Сх” такой:

  1. Включить режим “Сх” и подобрать предел замера — 2000 пФ — 20 мкФ в стандартном приборе;
  2. Вставить конденсатор в гнезда в приборе или приложить щупы к выводам конденсатора и посмотреть значение на шкале прибора.

Амперовольтметром или мультиметром определяют наличие внутри корпуса короткого замыкания или обрыва.

Полярный конденсатор включают в цепь прибора с учетом направления тока. Электроды изделия производители маркируют. Конденсатор, рассчитанный для напряжения 1-3 В, при обратном токе выше нормы выйдет из строя.

Перед тем как измерить характеристики, полярный электролитический конденсатор выпаивают из платы. Включают мультиметр в режим измерения сопротивления или проверки полупроводников. Прикладывают щупы к электродам полярного конденсатора — плюс к плюсу, минус к минусу. Исправная емкость покажет плавный рост сопротивления. По мере заряда ток уменьшается, ЭДС растет и достигает напряжения источника питания.

Обрыв в конденсаторе будет выглядеть на мультиметре как бесконечное сопротивление. Прибор не отреагирует или стрелка на аналоговом экземпляре едва шевельнется.

При пробое элемента измеряемый параметр не соответствует номинальному значению в меньшую сторону, пропорционально величине пробоя.

Если задаться вопросом, как измерить мультиметром комплексное или эквивалентное последовательное сопротивление (ESR конденсатора), то без приставки сделать это проблематично. Реактивные свойства конденсатор проявляет при высокочастотном токе.

Watch this video on YouTube

Емкость аккумулятора автомобиля.

Емкость аккумулятора автомобиля — этот показатель говорит о возможностях данного аккумулятора. Часто емкость аккумулятора путают с его зарядом (заряженностью). Емкость показывает только потенциал аккумулятора, то есть время которое он способен выполнять питание нагрузки при его полном заряде.

В качестве наглядного примера можно взять стакан воды. В зависимости от того полный стакан либо пустой, его емкость (объем) не изменяется. Аналогичная ситуация и с аккумулятором — емкость одна и та же как в заряженном, так и в разряженном состоянии аккумулятора.

Энергетическая емкость аккумулятора [Вт/элемент] — это характеристика аккумулятора показывающая его способность разряжаться в режиме постоянной мощности за определенный небольшой период времени (обычно 15 минут). Для измерения емкости аккумулятора в ампер-часах по его энергии в Вт/эл (15 мин) существует формула:

Е = W [Вт/эл] / 4

Резервная емкость аккумулятора является характеристикой автомобильного аккумулятора, которая показывает его способность производить питание электросистемы движущегося автомобиля при не работающем генераторе автомобиля. Единица измерения — минуты заряда аккумулятора током 25 А. Емкость аккумулятора (ампер-час) по его резервной емкости (минуты) можно приближенно оценить по формуле:

Е = T / 2

Величины, от которых зависит емкость аккумулятора:

1. Ток заряда.

Производители обычно назначают номинальной емкость свинцового аккумулятора для UPS при длительных разрядах (10,20, 100 часов). При таких разрядах емкость аккумулятора обозначается: С10, С20 и С100. Протекающий через нагрузку ток, например, при 20-часовом заряде — I20 можно рассчитать по формуле:

I20 = Е20 / 20

2. Износ аккумулятора

В состоянии поставки емкость свинцового аккумулятора может быть немного меньше или больше его номинальной емкости. При выполнении несколько раз циклов разряд-заряд или после нескольких недель пребывания в буфере (под «плавающим» зарядом) емкость аккумулятора будет увеличиваться. Однако дальнейшая эксплуатация или хранение аккумулятора приводят к падению емкости аккумулятора, а сам аккумулятор стареет, изнашивается и значит потребуется замена аккумулятора на новый.