ПОДКЛЮЧЕНИЕ ЛЮМИНЕСЦЕНТНОЙ ЛАМЫ

Двумя элементами, без которых функционирование люминесцентной лампы является невозможным, являются стартер и дроссель.

Стартер представляет собой небольшую неоновую лампочку с расположенными в ней двумя биметаллическими электродами, которые в нормальном положении разомкнуты. После подачи электроэнергии электроды в стартере замыкаются. Электроэнергия передается на дроссель, в результате чего сила тока возрастает почти в три раза, практически моментально разогревая электроды внутри колбы.

Остывая, биметаллические контакты размыкаются. В момент их размыкания дроссель создает высоковольтный запускающий импульс, благодаря самоиндукции, возникающей в его обмотке. Этот импульс приводит к возникновению разряда в газоконденсатной среде внутри колбы, зажигая ее.

Существуют стартеры на 127 Вольт, которые работают в двухламповых схемах и на 220 Вольт, предназначенные для одной ламповых схем. Они НЕ взаимозаменяемы, так что перед установкой необходимо прочитать маркировку.

Стартер является элементом, который наиболее часто выходит из строя. Если в осветительном приборе погасла одна или несколько ламп необходимо, прежде всего, заменить стартеры.

Данная схема запуска характерна для светильников использующих электромагнитный балласт или по другому – электромагнитный пускорегулирующий аппарат (ЭмПРА). Его применение довольно широко распространено, однако системы подключения основанные на ЭмПРА, на данный момент являются морально устаревшим оборудованием.

Они имеют следующие недостатки:

  • довольно долгий запуск 1-3 сек, в зависимости от степени износа изделия;
  • неприятный звук, возникающий в процессе функционирования пластин дросселя, который со временем усиливается;
  • мерцание (эффект стробоскопа), негативно влияющее на зрение.

Подключение люминесцентной лампы при помощи электронного пускорегулирующего устройства (ЭПРА) имеет принципиально другую схему активации. Прежде всего ЭПРА функционирует в высокочастотном диапазоне 25-133 кГц, используя выходной каскад на транзисторах и трансформатор.

Применение ЭПРА имеет следующие преимущества:

  • отсутствие мерцания и шума в процессе функционирования;
  • отсутствие стартеров в схеме управления;
  • увеличение срока службы и экономия электроэнергии до 20%;
  • некоторые модели выпускаются с возможностью регулировки яркости свечения.

Применение люминесцентных ламп, безусловно, даст положительный экономический эффект в любой организации, частном доме или квартире. Кроме того, можно довольно точно подобрать цвет к уже использующимся образцам.

Однако стремительное распространение светодиодных ламп составило значительную конкуренцию, так как они превосходят люминесцентные по многим параметрам кроме стоимости.

На данный момент наиболее популярными производителями являются:

  • Космос (Россия);
  • OSRAM (Германия);
  • PHILIPS (Голландия);
  • General Electric (США);
  • Sylvania (Бельгия).

Утилизация люминесцентных ламп.

Классификатор относит люминесцентные лампы к отходам, которые необходимо сортировать и собирать отдельно, и к которым применимы особые требования к эксплуатации и утилизации. В связи с тем, что в состав изделия входит ртуть, относящаяся к первому классу опасности.

Хранить вышедшие из строя, отработанные и потерявшие целостность люминесцентные лампы необходимо хранить в герметичных контейнерах. При этом необходимо вести журнал учета, где отмечены дата выхода из строя, а также дата передачи партии нерабочих изделий специализированной организации для утилизации.

2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Преимущества и недостатки

Люминесцентные устройства имеют преимущества, достоинства и недостатки. Лампы имеют высокий показатель световой отдачи. Люминесцентные приборы в 20 Вт обеспечивают освещение в комнате, которое имеют устройства накаливания и иллюминационные лампы в 100 Вт.

Изделия отличаются высоким коэффициентом полезного действия. Энергосберегающие лампы используются до 20 тыс. часов при обеспечении требований эксплуатации.

Свет у люминесцентных конструкций не направленный, а рассеивающий. В северных регионах рекомендовано применение люминесцентных ламп дневного света в жилых и общественных зданиях.

Преимущество люминесцентных устройств в разнообразии конструктивных решений. Разные формы, цветовые оттенки устройств позволяют реализовывать оригинальные дизайнерские решения в архитектуре общественных и жилых комплексов.

К недостаткам люминесцентных приборов относится содержание в конструкции ртути, в зависимости от размера лампы объем вещества варьируется от 2,3 мг до 1 г. Однако производители разрабатывают конструкции, которые в применении не опасны.

Необходимо учитывать сложность в монтаже схем включения и ограниченную мощность на 1 единицу (150 Вт). Эксплуатация устройств зависит от климатических условий, т.к. при понижении температуры устройства гаснут либо не зажигаются. Световой поток в лампах снижается к концу эксплуатации прибора.

Как выбрать лампу

При выборе лампы важен температурный режим использования прибора, показатель электрического напряжения в сети, размеры ламп, сила светового потока, оттенок излучения. Параметры цоколей люминесцентных ламп должны соответствовать типам светильников, торшеров и т.д.

Различается подбор ламп по типу помещения (прихожие, гостиные, спальни, ванные и т.д.). Для жилых пространств подходят модели с резьбовым цоколем и электронным балластом, т.к. не имеют резкого мерцания и бесшумны.

Для прихожих необходимы мощные светильники с интенсивным, при этом рассеянным освещением. Для настенных бра подойдут приборы компактного типа с теплым оттенком (930) и цветопередачей высокого качества. Над карнизом под потолком можно монтировать ленточные светильники с лампами холодного оттенка (860) и трубчатой конструкцией.

В гостиной люминесцентные устройства используются для бра, которые монтируются для подсветки зон либо декоративных элементов. Цвет подбирается белый, высокого качества (940). Возможен монтаж осветительных устройств по периметру потолка.

В спальни рекомендуется выбирать люминесцентные приборы стандартные с показателем 930-933 либо компактные устройства с похожими качествами.

Освещение в кухонной зоне должно быть многоуровневым (общим и локальным). В качестве потолочных рекомендованы компактные устройства мощностью не меньше 20 Вт, оттенок света должен быть теплым, с показателем не ниже 840. Для обустройства рабочей зоны на кухне оптимальны лампы линейные люминесцентные, не создающие блики на поверхностях.

Цветность и состав излучения ламп

Излучение люминесцентных ламп создается в основном за счет люминофора, трансформирующего ультрафиолетовое излучение разряда в прах ртути. Эффективность преобразования ультрафиолетового излучения в видимое зависит не только от параметров исходного люминофора, но и от свойств его слоя. В люминесцентных лампах слой люминофора покрывает практически полностью замкнутую поверхность трубки, причем свечение возбуждается изнутри, а используется снаружи. Кроме потока люминесценции суммарный световой поток люминесцентных ламп содержит видимое излучение линий ртутного разряда, просвечивающее сквозь слой люминофора. Световой поток люминесцентных ламп зависит, таким образом, как от коэффициента поглощения люминофора, так и от коэффициента отражения. Цветность излучения люминесцентной лампы не точно соответствует цветности используемого люминофора. Поток излучения ртутного разряда как бы сдвигает цветность лампы в синюю область спектра. Это смещение незначительно, поэтому поправка на цветность находится в пределах допуска на цветность ламп.

Для люминесцентных ламп, используемых в установках общего освещения, из многочисленных оттенков, которые можно получить с помощью люминофора галофосфата кальция, выбраны четыре, определяющие типы люминесцентных ламп: ЛД – дневного света, цветовая температура 6500 К; ЛХБ – холодно-белого света с цветовой температурой 4800 К; ЛБ – белого света с цветовой температурой 4200 К; ЛТБ – тепло-белого света с цветовой температурой 2800 К. Среди ламп указанных цветностей различают также лампы с улучшенным спектральным составом излучения, обеспечивающим хорошую цветопередачу. К обозначению таких ламп после букв, характеризующих цвет излучения, добавляется буква Ц (например, ЛДЦ, ЛХБЦ, ЛБЦ, ЛТБЦ). Для изготовления ламп с улучшенной цветопередачей к галофосфату кальция добавляют другие люминофоры, излучающие главным образом в красной области спектра. Контроль соответствия ламп по излучению заданной цветности осуществляют путем проверки цветности излучения с помощью колориметров.

В люминесцентных лампах излучение охватывает практически весь видимый диапазон с максимум в желтой, зеленой или голубой его части. Оценить цвет такого сложного излучения только по длине волны не предоставляется возможным. В этих случаях цвет определяют по координатам цветности x и y, каждой паре значений которых соответствует определенный цвет (точка на цветовом графике).

Правильное восприятие цвета окружающих предметов зависит от спектрального состава излучения источника света. В этом случае принято говорить о цветопередаче источника света и оценивать ее по значению параметра Rа, называемого общим индексом цветопередачи. Значение Rа является показателем восприятия цветного предмета при его освещении данным источником искусственного света по сравнению с эталонным. Чем больше значение Rа (максимальное значение 100), тем выше качество цветопередачи лампы. Для люминесцентных ламп типа ЛДЦ Rа = 90, ЛХЕ – 93, ЛЕЦ – 85. Общий индекс цветопередачи является усредненным параметром источника света. В ряде специальных случаев дополнительно к Rа используют индексы цветопередачи, обозначаемые Ri, которые характеризуют восприятие цвета, например, при его сильной насыщенности, необходимости правильного восприятия цвета человеческой кожи и тому подобного.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ И СВЕТОВЫЕ ХАРАКТЕРИСТИКИ

Цветопередача.

Является одной из главных характеристик изделия, зависит от состава люминофора. На сегодняшний день разработано множество составов, которые дают довольно широкую цветовую гамму. Наиболее распространенными оттенками для домашнего использования являются жёлтые, тёплые цвета, имеющие температуру около 2700 К.

Для офисных помещений наибольшее распространение получило белое «дневное» искусственное освещение, которое находятся в диапазоне температур 4000 — 4500К. Довольно часто можно встретить лампы холодного белого цвета, используемые в специальных осветительных приборах на производстве и в медицине, они имеют цвет свечения до 6000 — 6500 К.

Для удобства пользователя была разработана специальная классификация цветов люминесцентных ламп:

  • ЛКБ – естественный холодный;
  • ЛДЦ – дневной с улучшенной цветопередачей;
  • ЛТБ – белый теплый;
  • ЛД – дневной;
  • ЛБ – белый;
  • ЛЕЦ – естественный с улучшенной цветопередачей;
  • ЛХБ – холодный белый.

Кроме этого определённые добавки в люминофор могут изменять и цветность лампового света, делать его розовым, голубым, зелёным. Этот эффект широко используется в рекламной индустрии и коммерции. К примеру, люминесценции лампы розового цвета часто используют для подсветки стеклянных витрин мясных отделов. Это значительно улучшает внешний вид продукта.

Цоколь.

В зависимости от конструкции используются две принципиальных формы цоколя.

Лампы в виде прямой трубки имеют двухконтактные штырьковые цоколи, расположенные по краям. Одной из разновидностей такой конструкции, использующейся в изделиях небольшого размера, является штырьковый цоколь для U-образной колбы, встроенный в пускорегулирующее устройство.

Патронные цоколи – имеют классическую форму с резьбой и могут быть использованы в бытовых устройствах освещения, без каких либо ограничений.

Технические характеристики и классификация

Чтобы классифицировать и выделить технические характеристики люминесцентных ламп следует обратить своё внимание на такие показатели их работоспособности и конструкции:

  • Тип излучаемого света. Энергосберегающие устройства могут излучать как обычный белый, так и дневной свет. Более новой их разновидностью являются универсальные приборы.
  • Поперечная ширина колбы. Пропорционально с ростом этого показателя, увеличиваются все остальные показатели, такие мощность, температура света, спектр и длительность эксплуатации прибора. Самыми распространёнными и наиболее эффективными, считаются диаметры восемнадцать, двадцать шесть и тридцать восемь миллиметров. Диаметр и длину всей колбы часто указывают вместе, например, размеры 38\406.
  • Показатель силы излучения или простыми словами мощность устройства. Благодаря данному критерию мы способны просчитать какую площадь возможно осветить с помощью выбранной нами лампы. Также от показателя мощности зависит и коэффициент полезного действия прибора.
  • Количество цоколей может быть в одном варианте, двух либо компактной формой со встроенными цоколями. Для увеличения компактности лампы скручивают спиралью, для экономии пространства.
  • Потребность в конструкции стартера или и безстартерный прибор. Существует мнение, что лампы, не имеющие стартера, обладают большей экономичностью, но это не так. На самом деле такие устройства просто затрачивают то же количество электроэнергии на более продолжительный запуск.
  • Номинальное напряжение, которое необходимо для функционирования лампы. Существуют разновидности способные работать от стандартного напряжения 220 вольт и более уникального, 127 вольт.
  • Форма колбы: кольцо, у-образная, прямая, спираль, шарообразный прибор, дуговая форма. Стандартные бытовые лампы обычно имеют самую приемлемую спиральную конструкцию и, как правило, не маркируются.
  • Срок службы. В зависимости от сферы использования, срок службы будет отличаться. Наибольшим периодом работы обладают домашние энергосберегающие лампы.

В сравнении с более старыми аналогами, появившись на рынке, каждая энергосберегающая лампочка маркировалась и имела своё обозначение. Систему обозначения придумали сразу и лишь дополняли с выходом более новых моделей и расширением функциональности.

Производители обозначают тип устройства, но редко указывают такие параметры, как диаметр и длину колбы, они пишутся только на коробке.

Маркировка отечественных производителей

Форма колбы наглядно демонстрирует вид и влияет на большинство характеристик, давайте разберём, как маркируют колбы:

  • U – ствольчатое устройство. Спереди дополнительно указывается цифра, которая показывает, сколько электрических дуг возникает внутри.
  • M – уточнение, которое показывает что изделие имеет маленькие габариты при относительно большой мощности.
  • S – Спиральный тип колбы. Так же существуют подвиды, такие как спиральная с установленным корпусом-рубашкой.
  • P – это обозначение показывает, что используется корпус-рубашка. Применяется практически со всеми разновидностями энергосберегающих устройств.
  • C – в форме свечи.
  • Ш – шарообразное устройство, такая форма является стандартно для рефлекторных ламп.
  • R – указывает на то, что в конструкции присутствует рефлектор для направления потока света.

Устройство и принцип работы ламп

Люминесцентные лампы низкого давления явились первыми газоразрядными лампами, которые благодаря высокой световой отдаче, хорошему спектральному составу и большому сроку службы нашли применение для целей общего освещения, несмотря на некоторую сложность их включения в электрическую сеть. Высокая световая отдача люминесцентных ламп достигнута благодаря сочетанию дугового разряда в парах ртути низкого давления, отличающегося высокой эффективностью перехода электрической энергии в ультрафиолетовое излучение, с преобразованием последнего в видимое в слое люминофора.

Люминесцентные лампы представляют собой длинные стеклянные трубки, в торцы которых впаяны ножки, несущие электроды (рисунок 1). Электроды представляют собой вольфрамовую биспираль или триспираль с нанесенным на нее слоем активного вещества, обладающего низкой работой выхода при температуре нагрева около 1200 К (оксидные катоды), либо холодный оксидный катод с увеличенной поверхностью, исключающей превышение его температуры во время горения лампы.

Рисунок 1. Схема люминесцентной лампы:1 – ножка; 2 – электрод; 3 – катод; 4 – слой люминофора; 5 – трубка колбы; 6 – цоколь; 7 – ртутные пары

Оксидный катод покрыт слоем эмитирующего вещества, состоящего из оксидов щелочноземельных металлов, получаемых при нагреве и разложении карбонидов (BaCO3, CaCO3, SrCO3). Покрытие активировано малыми примесями щелочноземельных элементов. В результате наружная поверхность катода превращается в полупроводниковый слой с малой работой выхода. Оксидные катоды работают при 1250 – 1300 К, обеспечивая большой срок службы и малые катодные падения напряжения.

В трубку люминесцентной лампы введены небольшое количество ртути, создающее при 30 – 40 °С давление ее насыщающих паров, и инертный газ с парциальным давлением в несколько сотен паскалей. Давление паров ртути определяет снижение напряжения зажигания разряда, а также выход ультрафиолетового излучения резонансных линий ртути 253, 65 и 184,95 нм. В качестве инертного газа в люминесцентной лампе используют главным образом аргон при давлении 330 Па. В последнее время для наполнения ламп общего назначения применяют смесь, состоящую из 80 – 90 % Ar и 20 – 10 % Ne при давлении 200 – 400 Па. Добавка инертного газа к парам ртути облегчает зажигание разряда, снижает распыление оксидного покрытия катода, увеличивает градиент электрического потенциала столба разряда и повышает выход излучения резонансных линий ртути. В люминесцентных лампах 55% мощности приходится на долю линии 253,65 нм, 5,7% – линии 184,95 нм, 1,5 – 2% – линии 463,546 и 577 нм, на световое излучение других линий – 1,8%. Остальная мощность расходуется на нагрев колбы и электродов. На внутреннюю поверхность трубки равномерно по всей ее длине наносят тонкий слой люминофора. Благодаря этому световая отдача ртутного разряда, равная 5 – 7 лм/Вт, возрастает до 70 – 80 лм/Вт в современных люминесцентных лампах мощностью 40 Вт. При использовании люминофоров на основе редкоземельных элементов световая отдача люминесцентной лампы диаметром 26 мм повышается до 90 – 100 лм/Вт.

Используемое в люминесцентных лампах низкое давление паров ртути, получающееся при температуре колбы, мало отличающейся от температуры внешней среды, делает ее параметры зависящими от внешних условий. Эксплуатационные параметры ламп определяются параметрами пускорегулирующей аппаратуры.

Ввиду многообразия и сложности указанных выше зависимостей рассмотрим каждую из них отдельно. При этом будем иметь в виду, что в реальных условиях работы ламп они взаимосвязаны.

Конструкция люминесцентной лампы

Высокие показатели световой отдачи выдает дуговой разряд в ртутных парах, сочетаясь с ультрафиолетовым излучением, преобразующимся в слое люминофора. В результате, по сравнению с обычной лампочкой, получается более ровный и устойчивый свет, максимально приближенный к естественному освещению. Лампа линейная люминесцентная относится к газоразрядным светильниками низкого давления.

Основным конструктивным элементом является стеклянная колба со стандартными диаметрами 12, 16, 26 и 38 мм. В обычных лампах она имеет прямую форму, а в компактных применяется более сложная конфигурация. На концах цилиндра установлены стеклянные ножки, герметично впаянные в торцы. Они предназначены для размещения электродов, изготовленных из вольфрамовой проволоки. В свою очередь, электроды соединяются методом пайки со штырьками цоколя.

Под действием приложенного напряжения в газовой среде возникает разряд электричества, значение которого ограничено компонентами пускорегулирующей аппаратуры. Одновременно из электродов начинает испускаться поток электронов, подвергающих ионизации атомы ртути. В результате, возникает видимое свечение и ультрафиолетовое излучение, невидимое обычным зрением. Далее, ультрафиолет попадает на слой люминофора, покрывающего внутреннюю поверхность колбы. Под его воздействием возникает световое излучение в видимой части спектра.

Свечение лампы происходит за счет электрического разряда (в меньшей степени) и светящегося люминофорного покрытия, выдающего основную часть светового потока. В зависимости от состава люминофора можно получать любые цвета, начиная от обычного белого, и заканчивая разнообразными тонами и оттенками, количество которых постоянно увеличивается.

Разбираем все плюсы и минусы

Показатель световой отдачи увеличивается в том случае, когда длина устройства уменьшается. Таким образом, потери анодных и катодных взаимодействий стают меньше и световой поток становится более качественным. Исходя из этого, можно понять что более эффективной будет лампа на 26 Вт, чем две обладающие аналогичной суммарной мощностью.

Какими плюсами обладают такие устройства:

  1. Относительно высокий коэффициент полезного действия, находится примерно в районе двадцати пяти процентов, а показатель светоотдачи выше до десяти раз, чем у ламп накаливания.
  2. Срок эксплуатации примерно двадцать тысяч часов.
  3. Довольно высокая степень светоотдачи. Данный показатель превосходит лампы накаливания в пять-шесть раз. Например, двадцати ватное энергосберегающее устройство, выделяет количество света примерное равное сто ватной лампе накаливания.
  4. Очень широкий цветовой спектр. Есть возможность выбрать лампу с таким цветом свечения, который вам необходим. На сегодняшний день существуют сотни разных вариантов оттенков.
  5. Свет распределён по всему объёму устройства, а не только на рабочем органе, как в случае с накаливающейся лампой.

Конечно, у такого устройства есть недостатки:

  • Нуждаются в дополнительной установке балласта, для стабилизации и поддержания нормальной работы лампы. Балласт – это пускорегулирующее устройство, которое обеспечивает нормальный процесс зажигания и стабильную работу энергосберегающей лампы.
  • Сильно зависят от показателя внешней температуры воздуха. Оптимальной температурой для работы, является двадцать градусов.
  • Присутствует риск отравления парами ртути при значительном повреждении оболочки устройства.
  • Нестабильное напряжение будет вызывать сильное мерцание, которое ощутимо для человеческого глаза и сильно портит зрение.
  • Установка диммера возможна только с использованием дополнительных устройств.
  • Утилизация нуждается в специализированном сервисе, который стоит немалых денег.

Выбирает энергосберегающую лампу для своих потребностей

Подбирая для себя данное устройство, следует придерживаться определённых правил, которые впоследствии будут влиять на его показатели качества и долговечности.

Маркировка популярных производителдей

На какие технические характеристики следует обратить внимание:

  • Особенности помещения, где лампу будут устанавливать.
  • Температура, при которой устройству необходимо будет функционировать.
  • Качество вашей энергосети.
  • Габариты лампы. Если она слишком длинная или широкая, есть шанс что она не поместиться в ваш светильник.
  • Необходимая потребность в мощности, цвете и разновидности светового потока.

Подобрав устройство в соответствии с данными правилами, вы гарантировано получите хороший продукт, который сможет соответствовать всем вашим потребностям.

Когда занялся решением проблемы освещения своей банки столкнулся с проблемой расшифровки того что написано на лампах.Ведь очень легко потеряться в сложном разнообразии люминесцентных ламп,а если у вас под рукой нет каталога с подробными характеристиками что делать?

Вот справочная статья которая думаю поможет многим не потерятся в своем выборе