Выбор ступени регулирования УКРМ

Конденсаторная батарея (УКРМ) содержит ограниченный набор конденсаторов. Конденсаторы могут быть одинаковой или различной ёмкости и разбиты на группы. Каждая группа имеет свое коммутационное устройство (контактор) для включения в электрическую цепь. Микропроцессорный блок контроля и управления измеряет параметры текущего режима (ток и напряжение) и подбирает такое сочетание имеющихся групп конденсаторов, чтобы обеспечить требуемое значение коэффициента реактивной мощности. Очевидно, что регулирование реактивной мощности УКРМ является дискретным. Минимальная величина изменяемого значения реактивной мощности УКРМ называется ступенью регулирования ΔQКУ. Чем меньше ступень регулирования, тем более громоздким и дорогим получается УКРМ, так как увеличивается число конденсаторных групп и коммутационных устройств, но тем точнее поддерживается заданный коэффициент реактивной мощности.

Таким образом, при выборе УКРМ необходимо наряду с номинальной мощностью определить величину ступени регулирования. Ступень регулирования должна быть достаточно мала для поддержания коэффициента реактивной мощности в заданном диапазоне, см. (12), и в то же время без необходимости не увеличивала габариты и стоимость УКРМ.

Для наглядности нанесём значения QКУ, QКУ.min и QКУ.max на числовую ось Q для текущего (не расчетного) режима нагрузки в фиксированный момент времени (см. рис. 2, а).

Текущий режим нагрузки характеризуется значениями:

  • Pнагр.(Qнагр.) – активная (реактивная) мощность нагрузки;
  • cosϕнагр. – коэффициент мощности нагрузки;
  • QКУ – реактивная мощность, вырабатываемая КУ;
  • QКУ.min и QКУ.max – граничные значения реактивной мощности УКРМ для текущего режима нагрузки.

Рис. 2. Изображение реактивной мощности УКРМ в текущем режиме.

а – до переключения ступени регулирования; б – в момент переключения ступени регулирования

Значение QКУ находится между значениями QКУ.min и QКУ.max, значит коэффициент реактивной мощности tgϕВН находится в допустимом диапазоне значений. При уменьшении реактивной мощности нагрузки Qнагр. значения QКУ.min и QКУ.max начинают уменьшаться, см. (5), (16) и (17). При этом они смещаются влево на оси Q до тех пор, пока QКУ.max не достигнет значения QКУ (см. рис. 2, б). При дальнейшем снижении Qнагр. значение QКУ выходит за допустимый диапазон. В этот момент УКРМ снижает вырабатываемую реактивную мощность QКУ на величину ступени регулирования ΔQКУ до значения Q’КУ. Очевидно, что величина ступени регулирования не должна превышать разность между значениями QКУ.max и QКУ.min. Аналогичные рассуждения можно провести при увеличении реактивной мощности нагрузки Qнагр.

Итак, расчётная величина ступени регулирования компенсирующего устройства определяется по выражению:

(21)

Подставив в (21) выражения (16) и (17), получим формулу расчёта ступени регулирования УКРМ:

(22)

Выбор ступени регулирования УКРМ ΔQКУ выполняется по выражению:

(23)

Подставив (22) в (23), окончательно получим:

(24)

Из (22) видно, что расчетное значение ступени регулирования зависит от величины активной мощности нагрузки Pнагр.; при снижении Pнагр. снижается и расчетное значение ΔQКУ.р. Следовательно, если ступень регулирования выбрана по расчетной мощности нагрузки Pр.нагр., то приемлемое значение tgϕВН гарантированно будет обеспечиваться только в диапазоне расчетных (максимальных) значений нагрузок потребителей. При снижении потребляемой нагрузки Pнагр. величина ΔQКУ.р может оказаться меньше ΔQКУ, и tgϕВН выйдет за границы диапазона допустимых значений tgϕmax и tgϕmin. Во избежание этой ситуации рекомендуется производить расчет ΔQКУ.р в режиме малых нагрузок. Тогда выбранная ступень регулирования ΔQКУ по выражению (24) обеспечит поддержание tgϕВН в требуемом диапазоне в режиме и больших, и малых нагрузок.