Введение

С электричеством вы сталкиваетесь постоянно. Вы видели молнию, вы освещаете комнату с помощью электрической лампочки, электрообогреватель выделяет тепло – все эти явления связаны с движением электрического заряда. С неподвижным электрическим зарядом вы тоже сталкивались, когда после расчесывания получали наэлектризованные волосы. Они разлетаются в разные стороны. Электрические заряды находятся без преувеличения везде, из них состоит любое вещество! На этом уроке мы выясним то, что нам известно про заряды.

Как известно, в природе встречаются заряды двух типов – положительные и отрицательные. Разноименные заряды притягиваются, одноименные – отталкиваются. Это взаимодействие происходит на любом расстоянии. Как же они тогда взаимодействуют? Для этого существует электрическое поле. Вокруг каждого заряда существует такое поле и если в него попадает еще один заряд, то он начинает «чувствовать» это поле: на него начинают действовать силы притяжения или отталкивания соответственно.

В природе есть много ненаблюдаемого. Например, мы не видим ветер, но видим, как он раскачивает ветви деревьев. Мы не видим температуру, но мы видим, как нагретые тела расширяются. По расширению, например, ртути в термометре, мы можем температуру измерять (см. рис. 1).

Рис. 1. Расширение ртути

Т. е. мы наблюдаем проявление чего-то и на основе этих наблюдений судим о том, чего непосредственно не наблюдаем. Заряд мы тоже изучаем по его проявлению. Мы не видим заряды, но наблюдаем их взаимодействие. Один заряд действует на другой на расстоянии через электрическое поле. Поле заряда – это пространство, где на другие заряды будет действовать сила.

Взаимодействие тел через поле нам уже знакомо. Тело, обладающее массой, создает вокруг себя поле – гравитационное, которое проявляется в действии на другое тело, обладающее массой. Их взаимодействие подчиняется закону всемирного тяготения (см. рис. 2).

Рис. 2. Взаимодействие массивных тел

Закон всемирного тяготения

Вокруг тела, обладающего массой, возникает гравитационное поле. Посредством этого поля массы взаимодействуют, притягиваются. Сила их притяжения пропорциональна величине каждой из масс и обратно пропорциональна квадрату расстояния между ними (см. рис. 3):

 – константа, гравитационная постоянная, равна .

Рис. 3. Закон всемирного тяготения

Квадрат расстояния встречается во многих физических формулах, так что это позволяет говорить о законе, связывающем величину эффекта с квадратом расстояния от источника воздействия:

Эта пропорциональность справедлива для гравитационного, электрического, магнитного действия, силы звука, света, радиации, распространяющихся от источника. Связано это, конечно, с тем, что площадь поверхности сферы распространения эффекта увеличивается пропорционально квадрату расстояния (см. рис. 4). Это будет выглядеть естественным, если вспомнить, что площадь сферы пропорциональна квадрату радиуса:

и тогда понятно, что сила действия от источника вдали от него должна распределяться по сфере всё большего радиуса.

Рис. 4. Площадь сферы распространения эффекта увеличивается с увеличением радиуса сферы

Итак, электрические заряды взаимодействуют через электрическое поле, которое они вокруг себя создают.

Чем может быть опасно статическое электричество

Это явление способно привести к ряду опасных последствий.

1. Воспламенение

Статическое электричество может стать причиной пожара там, где используются легковоспламеняющиеся материалы — например, на полиграфических предприятиях.

На таком производстве много чернил и бумаги, которые быстро загораются. Они трутся об оборудование во время печати, возникает статическое электричество, появляется искра и начинается пожар How Do You Prevent a Static Electricity Fire? .

2. Производственные нарушения

От статического электричества особенно страдают Anti-Static Control Problems in The Plastics Industry предприятия, которые производят пластмассу или текстиль.

Когда эти материалы положительно или отрицательно заряжены, они могут притягиваться или отталкиваться от рабочей поверхности.

Это нарушает процесс производства, поэтому предприятия используют ионизаторы воздуха, которые помогают предотвратить возникновение заряда.

3. Удар молнии

Во время перемещения воздушных потоков, которые насыщены водяными парами, возникает статическое электричество.

Оно создаёт грозовые облака с разным зарядом, которые разряжаются друг о друга или об озоновый слой. Так получаются молнии.

Молнии бьют в высокие здания, деревья и землю и становятся причиной поломок оборудования.

Направление тока. Кто у нас в заряде главный?

Только так и остался один небольшой курьёз, который все знают, но никто из физиков так и не желает исправить.

положительными, а другие отрицательными

Но обнаружить потом удалось первыми не электроны, а ионы. Это как раз те самые безутешные атомы, потерявшие свой электрон. В ядре которых имеется «лишний» протон, и потому они заряжены. Ну а как это обнаружили, так сразу и вздохнули, и сказали — вот он, заряд ты наш положительный. И за протоном так закрепилась слава положительно заряженной частицы.

А потом догадались, что атомы чаще всего бывают нейтральными потому, что электрический заряд ядра уравновешивается зарядом электронных оболочек, вращающихся вокруг ядра. То есть построили планетарную модель атома. И только тогда поняли, что атомы составляют всё (почти) вещество, его твёрдую кристаллическую решётку, или всю массу его жидкого тела. То есть протоны с нейтронами солидно сидят в ядрах атомов. А не на побегушках, как лёгкие и подвижные электроны. Следовательно, ток бежит не от плюса к минусу, а наоборот, от минуса к плюсу.

Электризация тел

Чтобы макроскопическое тело оказывало электрическое влияние на другие тела, его нужно электризовать. Электризация — это нарушение электрической нейтральности тела или его частей. В результате электризации тело становится способным к электромагнитным взаимодействиям.

Один из способов электризовать тело — сообщить ему электрический заряд, то есть добиться избытка в данном теле зарядов одного знака. Это несложно сделать с помощью трения.

Так, при натирании шёлком стеклянной палочки часть её отрицательных зарядов уходит на шёлк. В результате палочка заряжается положительно, а шёлк — отрицательно. А вот при натирании шерстью эбонитовой палочки часть отрицательных зарядов переходит с шерсти на палочку: палочка заряжается отрицательно, а шерсть — положительно.

Данный способ электризации тел называется электризацией трением. С электризацией трением вы сталкиваетесь всякий раз, когда снимаете свитер через голову 😉

Другой тип электризации называется электростатической индукцией, или электризацией через влияние. В этом случае суммарный заряд тела остаётся равным нулю, но перераспределяется так, что в одних участках тела скапливаются положительные заряды, в других — отрицательные.

Рис. 2. Электростатическая индукция

Давайте посмотрим на рис. 2. На некотором расстоянии от металлического тела находится положительный заряд . Он притягивает к себе отрицательные заряды металла (свободные электроны), которые скапливаются на ближайших к заряду участках поверхности тела. На дальних участках остаются нескомпенсированные положительные заряды.

Несмотря на то, что суммарный заряд металлического тела остался равным нулю, в теле произошло пространственное разделение зарядов. Если сейчас разделить тело вдоль пунктирной линии, то правая половина окажется заряженной отрицательно, а левая — положительно.

Наблюдать электризацию тела можно с помощью электроскопа. Простой электроскоп показан на рис. 3 (изображение с сайта en.wikipedia.org).

Рис. 3. Электроскоп

Что происходит в данном случае? Положительно заряженная палочка (например, предварительно натёртая) подносится к диску электроскопа и собирает на нём отрицательный заряд. Внизу, на подвижных листочках электроскопа, остаются нескомпенсированные положительные заряды; отталкиваясь друг от друга, листочки расходятся в разные стороны. Если убрать палочку, то заряды вернутся на место и листочки опадут обратно.

Явление электростатической индукции в грандиозных масштабах наблюдается во время грозы. На рис. 4 мы видим идущую над землёй грозовую тучу.

Рис. 4. Электризация земли грозовой тучей

Внутри тучи имеются льдинки разных размеров, которые перемешиваются восходящими потоками воздуха, сталкиваются друг с другом и электризуются. При этом оказывается, что в нижней части тучи скапливается отрицательный заряд, а в верхней — положительный.

Отрицательно заряженная нижняя часть тучи наводит под собой на поверхности земли заряды положительного знака. Возникает гигантский конденсатор с колоссальным напряжением между тучей и землёй. Если этого напряжения будет достаточно для пробоя воздушного промежутка, то произойдёт разряд — хорошо известная вам молния.

Виды вольтметров

Существует множество различных видов вольтметров с различающимися шкалами. Поэтому вопрос о вычислении цены прибора в данном случае очень актуален. Очень распространены микровольтметры, милливольтметры, просто вольтметры и т. д. По их названиям понятно, с какой кратностью производятся измерения.

Кроме того, вольтметры делят на приборы постоянного тока и переменного тока. Хотя в городской сети и переменный ток, но на данном этапе изучения физики мы занимаемся постоянным током, который подают все гальванические элементы, поэтому нас и будут интересовать соответствующие вольтметры. То, что прибор предназначен для цепей переменного тока, принято изображать на циферблате в виде волнистой линии (рис. 6).

Рис. 6. Вольтметр переменного тока (Источник)

Замечание. Если говорить о значениях напряжений, то, например, напряжение 1 В является небольшой величиной. В промышленности используются гораздо большие значения напряжений, измеряемые сотнями вольт, киловольтами и даже мегавольтами. В быту же используется напряжение 220 В и меньшее.

На следующем занятии мы узнаем, что такое электрическое сопротивление проводника.

Список литературы

  1. Генденштейн Л. Э, Кайдалов А. Б., Кожевников В. Б. Физика 8 / Под ред. Орлова В. А., Ройзена И. И. – М.: Мнемозина.
  2. Перышкин А. В. Физика 8. – М.: Дрофа, 2010.
  3. Фадеева А. А., Засов А. В., Киселев Д. Ф. Физика 8. – М.: Просвещение.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Классная физика (Источник).
  2. YouTube (Источник).
  3. YouTube (Источник).

Домашнее задание

  1. Стр. 92: вопросы № 1, 2; стр. 93: вопросы № 1–4; стр. 95: вопросы № 1–4, упражнение № 16. Перышкин А. В. Физика 8. – М.: Дрофа, 2010.
  2. Вычислите, какой заряд прошел через проводник, если при напряжении 36 В электрическое поле выполнило работу 72 Дж.
  3. Определите цену деления прибора:(Источник)
  4. Подготовьте доклад об устройстве вольтметра и видах этого прибора.

Закон сохранения заряда

Вернёмся к примеру электризации трением — натирании палочки тканью. В этом случае палочка и кусок ткани приобретают равные по модулю и противоположные по знаку заряды. Их суммарный заряд как был равен нулю до взаимодействия, так и остаётся равным нулю после взаимодействия.

Мы видим здесь закон сохранения заряда, который гласит: в замкнутой системе тел алгебраическая сумма зарядов остаётся неизменной при любых процессах, происходящих с этими телами:

Замкнутость системы тел означает, что эти тела могут обмениваться зарядами только между собой, но не с какими-либо другими объектами, внешними по отношению к данной системе.

При электризации палочки ничего удивительного в сохранении заряда нет: сколько заряженных частиц ушло с палочки — столько же пришло на кусок ткани (или наоборот). Удивительно то, что в более сложных процессах, сопровождающихся взаимными превращениями элементарных частиц и изменением числа заряженных частиц в системе, суммарный заряд всё равно сохраняется!

Например, на рис. 5 показан процесс , при котором порция электромагнитного излучения (так называемый фотон) превращается в две заряженные частицы — электрон и позитрон . Такой процесс оказывается возможным при некоторых условиях — например, в электрическом поле атомного ядра.

Рис. 5. Рождение пары электрон–позитрон

Заряд позитрона равен по модулю заряду электрона и противоположен ему по знаку. Закон сохранения заряда выполнен! Действительно, в начале процесса у нас был фотон, заряд которого равен нулю, а в конце мы получили две частицы с нулевым суммарным зарядом.

Электризация

Процесс сообщения телу электрического заряда называется электризацией. Часто он происходит при трении тел друг о друга. Например, если потереть эбонитовую палочку о шерсть (см. рис. 5), то и она, и шерсть приобретут электрические заряды (эбонитовая палочка зарядится отрицательно, а шерсть – положительно).

Рис. 5. Заряжание эбонитовой палочки

Проверить это просто: если поднести два наэлектризованных кусочка шерсти друг к другу, то они будут отталкиваться, так как заряжены зарядом одинакового знака (см. рис. 6).

Рис. 6. Оба кусочка шерсти заряжены положительно

Из этого следует вывод, что заряды одного типа отталкиваются. Если расчесывать волосы, то расческа заряжается отрицательно, а волосы – положительно (см. рис. 7).

Рис. 7. Заряжание волос

Собственно, поэтому, после расчесывания, волосы разлетаются в разные стороны (каждый волос заряжен положительно и отталкивается от остальных (см. рис. 8)).

Рис. 8. Каждый волос заряжен положительно

Путем простых опытов мы обнаружили, что существует два типа зарядов, которые взаимодействуют следующим образом: однотипные заряды отталкиваются, разнотипные – притягиваются.

Как определить, какой именно заряд приобретает тело при трении

Мы проводим много опытов с расческами, тканями и палочками, чтобы они приобретали электрический заряд. Одна и та же шерсть заряжается отрицательно при трении о стекло и положительно при трении о полиэтилен. Как можно заранее знать, какой тип заряда приобретает материал? Есть ли какое-то правило? Можно заниматься практическим определением (такие опыты были проведены много раз), и были получены трибоэлектрические ряды некоторых материалов (см. рис. 9), в которых любой взятый материал при трении с материалом, расположенным ниже него в ряду, заряжается положительно, и наоборот. Разные экспериментаторы получали свои ряды, и на рисунке их можно увидеть.

Рис. 9. Трибоэлектрические ряды

Сейчас известно, что носителями двух типов заряда являются элементарные частицы: электрон и протон. Элементарные частицы неделимы, поэтому заряд одной частицы, равный , – это минимальный заряд, обозначается часто  или . Эти частицы имеют массу:  и  для электрона и протона соответственно.

Техника электробезопасности

Знание правил электробезопасности поможет предупредить аварийную ситуацию и уберечь здоровье и жизнь человека. Так как электричество имеет свойство нагревать проводник, то всегда существует возможность возникновения опасной для здоровья и жизни ситуации. Для обеспечения безопасности в быту необходимо придерживаться следующих простых, но важных правил:

  1. Изоляция сети всегда должна быть исправной, чтобы избежать перегрузок или возможности возникновения коротких замыканий.
  2. Влага не должна попадать на электроприборы, провода, щитки и т. д. Также влажная среда провоцирует появление коротких замыканий.
  3. Обязательно следует делать заземление для всех электроустройств.
  4. Необходимо избегать перегрузки электропроводки, так как существует риск воспламенения проводов.

Техника безопасности при работе с электричеством предполагает использование прорезиненых перчаток, рукавиц, ковриков, разрядных устройств, приборов заземления рабочих участков, выключателей-автоматов или предохранителей с тепловой и токовой защитой.

Опытные электрики при возникновении вероятности поражения электричеством работают одной рукой, а вторая находится в кармане. Таким образом прерывается цепь «рука-рука» в случае непроизвольного прикосновения к щитку или другому заземлённому оборудованию. При воспламенении оборудования, подключённого к сети, ликвидируют огонь исключительно порошковыми или углекислотными тушителями.

Способы измерения

Существует ряд способов измерения электрического заряда, давайте рассмотрим некоторые из них. Измерительный прибор называется крутильными весами.

Весы Кулона – это крутильные весы его изобретения. Смысл заключается, в том, что в сосуде на кварцевой нити подвешена легкая штанга с двумя шариками на концах, и один неподвижный заряженный шарик. Вторым концом нить закреплена за колпак. Неподвижный шарик вынимается, для того чтобы сообщить ему заряд, после этого нужно установить его обратно в сосуд. После этого подвешенная на нити часть начнет движение. На сосуде нанесена проградуированная шкала. Принцип его действия отражен на видео.

Другой прибор для измерения электрического заряда – электроскоп. Он, как и предыдущие, представляет собой стеклянный сосуд с электродом, на котором закреплено два металлических листочка из фольги. Заряженное тело подносят к верхнему концу электрода, по которому заряд стекает на фольгу, в результате оба листочка окажутся одноименно заряженными и начнут отталкиваться. Величину заряда определяют по тому, насколько сильно они отклонятся.

Электрометр – еще один измерительный прибор. Состоит из металлического стержня и вращающейся стрелки. При прикосновении к электрометру заряженным телом, заряды стекают по стержню к стрелке, стрелка отклоняется и указывает на шкале определенную величину.

Напоследок рекомендуем просмотреть еще одно полезное видео по теме:

Мы рассмотрели важную физическую величину. Учения о ней позволили значительно расширить знания об электричестве в целом. Вклад в науку и технику достаточно весомый, а область применения этих знаний связана и с медициной. Ионизаторы воздуха положительно воздействуют на организм человека: ускоряют процесс доставки кислорода из воздуха к клеткам. Примером такого прибора является люстра Чижевского. Теперь вы знаете, что такое электрический заряд и как его измеряют.

Материалы по теме:

  • Как перевести ватты в киловатты
  • Закон Джоуля-Ленца простыми словами
  • Что такое статическое электричество

Как измерить силу тока

Эту характеристику можно измерить с помощью амперметра. Прибор последовательно подключается к электрической сети (плюс к плюсу, минус к минусу). Чем ниже сопротивление амперметра, тем меньше его влияние на измерения, и тем они точнее. Если сопротивление амперметра стремится к нулю, он нейтрален и не влияет на показатели сети.

Виды амперметров

По конструкции амперметры бывают:

  • аналоговые (со стрелочной измерительной головкой);
  • цифровые (с индикатором).

Амперметр – прибор для измерения силы тока в амперах.

По способу измерения:

  1. Магнитоэлектрические, в которых отклонение чувствительной стрелки и показатели зависят от силы взаимодействия полей постоянного магнита и поля электрического тока в алюминиевой рамке, и угла поворота последней.
  2. Электромагнитные, показатели которых меняются с подвижками железного сердечника под влиянием электромагнитного поля катушки.
  3. Электродинамические, в которых отклонение стрелки связано с притяжением или отклонением подвижной катушки относительно неподвижной, соединенных последовательно или параллельно.
  4. Тепловые, в которых при нагреве электрическим током происходит изменение длины металлической нити и положения связанной с нитью измерительной стрелки.
  5. Индукционные, в которых связанный со стрелкой металлический диск отклоняется под воздействием электромагнитного поля неподвижных катушек.
  6. Детекторные, в которых магнитоэлектрический прибор соединен с выпрямителем-детектором.
  7. Термоэлектрические, которые состоят из нагревателя и магнитоэлектрического измерительного механизма.
  8. Фотоэлектрические, в которых фотоэлектрический элемент преобразует световой поток в электрический.

Магнитоэлектрические приборы определяют только силу постоянного тока, индукционные и детекторные – переменного. Фотоэлектрические высокоточные приборы работают с постоянным током и током низкой и высокой частоты.

Остальные из перечисленных подходят для разных токов.

Приборы бывают многофункциональными, т.е. действующими в разных режимах. Например, мультиметр работает и как вольтметр, и как омметр, и как мегомметр (для высоких сопротивлений).

В всех современных измерительных приборах есть переключатель диапазона чувствительности.

Правила измерения

  1. Амперметр включается в электросеть последовательно, «в разрыв цепи».
  2. При включении прибора в сеть, необходимо соблюдать полярность, присоединяя «+» прибора к «+» источника тока, а «-» к «-».
  3. Тестируемая линия при подключении должна быть обесточена. Иначе прикасание щупами прибора к проводам или контактам может вызвать короткое замыкание.
  4. При высоких напряжениях в цепь переменного тока помимо амперметра включается трансформатор или шунт, в цепь постоянного – магнитный усилитель или шунт.
  5. Тип амперметра для измерений выбирают в соответствии с типом электрического прибора или линии. Также учитывают требуемую точность показателей.

Перед подключением необходимо подробно изучить инструкцию к амперметру.

2+

Франклин

Ещё одна единица и измерения заряда, которая названа в честь американского изобретателя и физика — Бенджамина Франклина. Его портрет можно увидеть на стодолларовой купюре США. Эта единица относится к системе величин СГСЭ, в которой базовыми являются такие единицы как сантиметр, грамм и секунда. По другому эту систему единиц называют абсолютной системой физических единиц и она широко использовалась до принятия системы СИ (принята в 1960 году).

Сокращённо единица измерения записывается как Фр (русское) или Fr (английское).

Определение электрического заряда в системе СГСЭ следующее:

Количество электрического заряда в один Франклин — это такое количество заряда, что два разноимённых заряда по одному франклину, находящихся в вакууме на расстоянии одного сантиметра, будут притягиваться друг к другу с силой в один дин.

Как видно из определения, оно отличается от того, что приведено для системы СИ. Разница прежде всего в том, что в системе СИ заряд выражается через силу тока и исходя из этого определяется, а в системе СГСЭ заряд выражен через Закон Кулона.

Система СГСЭ удобна для вычислений и исследований в физике, а система СИ более удобна для практических нужд электротехники.

Закон Кулона, имеющий непосредственное отношение к зарядам, в системе СИ и СГС (СГСЭ), записываются по разному. Единицу заряда в 1 Кл можно перевести в 1 Фр и наоборот.

Электрический заряд — закон сохранения заряда

Разумеется, тогда и приблизительно не могли представить, сколько таких электрических «корпускул» может оказаться хотя бы в совсем небольшом заряженном теле. Но практическая единица электрического заряда была всё-таки нужна. И её стали придумывать. Кулон, в честь кого такую единицу потом назвали, видимо измерял величины зарядов с помощью металлических шариков, с которыми проводил опыты, но как-то относительно. Открыл свой знаменитый закон Кулона, в котором алгебраически записал, что сила, действующая между двумя, разнесёнными на расстояние R зарядами q1 и q2, пропорциональна их произведению и обратно пропорциональна квадрату расстояния между ними.

Коэффициент k зависит от среды, в которой происходит взаимодействие, в вакууме же он равен единице.

Ньютона

Изучая взаимодействие электрических зарядов, он делал замеры при разных расстояниях между шариками, фиксировал отклонения на своих крутильных весах, которое при этом получаются, когда заряженные шарики отталкиваются друг от друга. Видимо, его закон — то была чистая победа алгебры, так как единицы измерения заряда «кулон» сам Кулон не знал и знать просто не мог.

Другой победой было открытие того факта, что общее количество этой самой величины q в шариках, которые он сумел зарядить таким способом, оставалось всегда неизменным. За что открытый закон он и назвал законом сохранения заряда.

Q = q 1 + q 2 + q 3 + … + q n

Надо отдать должное аккуратности и терпению учёного, а также отваге, с которой он провозгласил свои законы, не имея единицы количества того, что изучал.

Частица электричества — минимальный заряд

Это уже потом догадались, что элементарным, то есть самым маленьким, электрическим зарядом является… электрон. Только не маленький кусочек янтаря, а невыразимо малая частица даже уже не вещества (почти), но которая обязательно есть в любом вещественном теле. И даже в каждом атоме любого вещества. И не только в атомах, но и вокруг них. И те:

  • что находятся в атомах, называются связанные электроны.
  • а которые вокруг — свободные электроны.

Связанными в атоме электроны бывают потому, что атомное ядро тоже содержит частицы заряда — протоны, и каждый протон обязательно притянет к себе электрон. Как раз по закону Кулона.

А заряд, который вы можем видеть или чувствовать получается в результате:

  • трения,
  • накопления,
  • химической реакции,
  • электромагнитной индукции,

составляют только свободные электроны, которые были выброшены из атомов по причине разных недоразумений:

  1. от удара другого атома (тепловая эмиссия)
  2. кванта ли света (фотоэмиссия) и по другим причинам

и бродящие внутри огромных макроскопических тел (например, волосинок).

А кулон, это величина совсем простая и нам близкая. Кулон, это тот самый заряд, который протекает в одну секунду через сечение проводника, если ток в нём имеет силу в один ампер. То есть при 1 ампере за каждую секунду через поперечное сечение проволочки будут мелькать как раз вот эти 624 квадриллиона … электронов.

Электроны настолько подвижны, и так быстро передвигаются внутри физических тел, что включают нам электрическую лампочку в одно мгновение, как только мы нажмём на выключатель. И поэтому электрическое взаимодействие у нас такое быстрое, что каждую секунду происходят события, называемые «рекомбинация». Сбежавший электрон находит атом, из которого электрон как раз убежал, и занимает в нём свободное место.

Количество таких событий в секунду тоже порядка…, ну, все это себе уже представляют. И эти события непрерывно повторяются, когда электроны покидают атомы, потом в атомы возвращаются. Убегают — возвращаются. Такова их жизнь, без этого они просто не могут существовать. И только благодаря этому существует электричество — та система, которая стала частью нашей жизни, нашего комфорта, нашего питания и сохранения.

Два вида заряда

Поскольку гравитационное взаимодействие всегда является притяжением, массы всех тел неотрицательны. Но для зарядов это не так. Два вида электромагнитного взаимодействия — притяжение и отталкивание — удобно описывать, вводя два вида электрических зарядов: положительные и отрицательные.

Заряды разных знаков притягиваются друг к другу, а заряды разных знаков друг от друга отталкиваются. Это проиллюстрировано на рис. 1; подвешенным на нитях шарикам сообщены заряды того или иного знака.

Рис. 1. Взаимодействие двух видов зарядов

Повсеместное проявление электромагнитных сил объясняется тем, что в атомах любого вещества присутствуют заряженные частицы: в состав ядра атома входят положительно заряженные протоны, а по орбитам вокруг ядра движутся отрицательно заряженные электроны.

Заряды протона и электрона равны по модулю, а число протонов в ядре равно числу электронов на орбитах, и поэтому оказывается, что атом в целом электрически нейтрален. Вот почему в обычных условиях мы не замечаем электромагнитного воздействия со стороны окружающих тел: суммарный заряд каждого из них равен нулю, а заряженные частицы равномерно распределены по объёму тела. Но при нарушении электронейтральности (например, в результате электризации) тело немедленно начинает действовать на окружающие заряженные частицы.

Почему существует именно два вида электрических зарядов, а не какое-то другое их число, в данный момент не известно. Мы можем лишь утверждать, что принятие этого факта в качестве первичного даёт адекватное описание электромагнитных взаимодействий.

Заряд протона равен Кл. Заряд электрона противоположен ему по знаку и равен Кл. Величина

Кл

называется элементарным зарядом. Это минимальный возможный заряд: свободные частицы с меньшей величиной заряда в экспериментах не обнаружены. Физика не может пока объяснить, почему в природе имеется наименьший заряд и почему его величина именно такова.

Заряд любого тела всегда складывается из целого количества элементарных зарядов:

Если , то тело имеет избыточное количество электронов (по сравнению с количеством протонов). Если же , то наоборот, у тела электронов недостаёт: протонов на больше.