Проблемы с качеством электропитания

Статорные обмотки асинхронного электродвигателя обладают значительной индуктивностью. Каждая из них по отдельности может рассматриваться как балластный трансформатор. По этой причине асинхронные электродвигатели в наименьшей степени зависят от качества подаваемого на них напряжения. Его снижение или увеличение на десяток вольт машиной будет просто проигнорировано, если оно произошло симметрично по всем фазам.

Наиболее проблемным является момент запуска и набора оборотов. Пусковой ток электродвигателя с короткозамкнутым ротором превышает номинальный минимум в пять раз. И чем выше мощность машины, тем это значение больше.

Дело усугубляется в том случае, если подключается нагруженный привод. Например, подъемный механизм или навозный транспортер на животноводческой ферме.

Решить проблему запуска можно двумя способами:

  1. Применить схему коммутации обмоток. В момент замыкания контактов рубильника они включены по схеме «Звезда», а после набора оборотов переключаются на «Треугольник». Снижение токовой нагрузки происходит по той причине, что на каждой обмотке первоначальное напряжение в 1,73 раза меньше – 220 вольт.
  2. Использовать автоматические выключатели с подходящей случаю времятоковой характеристикой. Например, рабочий ток асинхронного двигателя мощностью 3 кВт находится в пределах 12 ампер. Если вы поставите на входе цепи питания АВ с номиналом 16 ампер типа «С», то привод может отключаться во время запуска. Оптимальным вариантом является АВ на те же 16 ампер, но типа «В».

Первый способ

Первый способ защиты трехфазных асинхронных электродвигателей.

Это самый распространенный способ, проверенный временем. Защита двигателя от отключения одной фазы обеспечивается применением теплового реле ТЗ. Смысл этой защиты состоит в том, что постоянная нагревания подбирается таким же образом, что и постоянная нагревания электродвигателя. То есть, проще говоря, реле нагревается так же, как и двигатель. И при превышении температуры выше допустимой реле отключает двигатель. При отключении одной фазы ток через другие фазы резко возрастает, двигатель и тепловое реле начинают быстро нагреваться, что вызывает срабатывание теплового реле. Способ хорош и тем, что обеспечивает и защиту двигателя от перегрузки и пробоя одной фазы на корпус. Но для надежной защиты от пробоя на корпус двигатель обязательно должен быть заземлен или занулен. Недостаток этого способа в том, что его нужно достаточно точно подбирать и настраивать. В идеале его номинальный ток должен быть такой же, как и у двигателя.

11-3. Защита от многофазных коротких замыканий

Для защиты от многофазных коротких замыканий электродвигателей мощностью до 5 000 кВт обычно используется максимальная токовая отсечка. Наиболее просто токовая отсечка может быть выполнена с реле прямого действия встроенными в привод выключателя. С реле косвенного действия применяется одна из двух схем соединения трансформаторов
тока и
реле, приведенных на рис. 11-3 и 11-4. Отсечка выполняется с независимыми токовыми реле. Использование в схеме отсечки токовых реле с зависимой характеристикой (рис. 11-4) позволяет обеспечить с помощью одних и тех же реле одновременно защиту от коротких замыканий и перегрузки.

Короткие замыкания

Возникновение сверхтоков – они так названы потому, что в сотни и тысячи раз превышают номинальные – происходит в случае замыкания между фазой и землей (как физической, на корпус электроустановки, так и технологической нейтралью) или между фазами. Процесс этот сопровождается возникновением дуги электрического разряда и выделением большого количества тепла.

Поэтому несмотря на его явную и большую опасность, токовая защита электродвигателя решается наиболее просто – установкой плавких предохранителей или автоматических выключателей. Их номинал должен соответствовать рабочему току двигателя после набора оборотов. В цепи подачи напряжения они устанавливаются первыми.

Защита минимального напряжения

Обычно применяется на неответственных двигателях, когда нужно их отключить для обеспечения самозапуска ответственных. Аналогична групповой ЗМН в ТН 6(10) кВ, только выполняется индивидуальной.

Если говорить прямо, то даже в асинхронном двигателе 6(10) кВ может быть просто куча разных защит, в том числе и технологических (вентиляция, давление масла и т.д.) Все зависит от технологического процесса, который он обслуживает. Рассматривать их все мы не будем, ограничимся только самыми базовыми.

В следующей статье рассмотрим РЗА синхронных двигателей 6(10) кВ большой мощности

На рисунке

Терминал защиты и автоматики двигателя 6(10) кВ типа БМРЗ-152-ЭД.

Разработчик НТЦ «Механотроника», www.mtrele.ru

Терминал содержит все перечисленные в статье защиты и автоматику