Для чего необходимо заземление

Заземление

Из нормативной документации ГОСТа № 12.01.009-76 следует, что защитное заземление – это создание единого контура с землей и металлическими токоведущими частями, которые в процессе эксплуатации электротехнических приборов могут оказаться под напряжением, например, корпус микроволновой печи или стиральной машины.

Заземление требуется, чтобы при образовании напряжения в тех местах, где его быть не должно, электричество уходило в землю. Это позволяет предотвратить поражение током жителей квартиры или дома. Как правило, подобные явления наблюдаются при нарушении целостности изоляционного слоя и касания токоведущей жилы корпуса.

Типы заземления в бытовых условиях

В бытовых условиях правильно реализованная система заземления гарантирует бесперебойную работу всех электрических приборов. Во времена существования Советского Союза в домах не было большого скопления электроустановок, следовательно, такая мера безопасности практически не использовалась.

В то время широкое распространение получила эксплуатация системы TN-C, в которой заземляющий провод РЕ коммутировался с рабочим нулем в единую токопроводящую жилу РЕN, а к квартире подключался двухжильный провод. Эта система устарела, на замену пришла новая – TN-C-S. Ее особенность заключается в разъединении в распределительном щитке провода PEN на РЕ и N.

Все современные здания или строения, подлежащие модернизации, обслуживаются по трех- или пятипроводной схеме. В помещение подается три линии:

  • земля;
  • рабочий ноль;
  • фаза.

Если здание устаревшее и не оснащено системой заземления, а проводка двухпроводная, все современные трехпроводные электротехнические приборы утрачивают свои качества. Например, сетевой фильтр становится обычной переноской. В этом случае установка зануления в квартире согласно нормативному документу ПУЭ 1.7.132 запрещена.

Схемы подключения заземленной нейтрали

Существует несколько схем глухозаземленной нейтрали.

  • TN-C. Самая простая и наиболее распространенная в сельской местности схема. Четырехпроводная воздушная линия – три фазных и одна нейтраль, которая заземляется сначала у трансформатора, а потом на промежуточных столбах. Используется для питания одно- и трехфазных потребителей.
  • ТТ. Улучшенный вариант глухозаземленной нейтрали TN-C. Отличается от нее независимым заземляющим контуром, устраиваемым в здании или рядом с ним. К нему присоединяются корпуса бытовых электроприборов. Используется при подключении вновь построенных частных домов к четырехпроводным воздушным линиям электроснабжения.
  • TN-S. Применяется при прокладке подземных электролиний в пределах жилых кондоминиумов. Пять жил. Три токоведущих, одна нейтраль «звезды» (технологический 0) и защитный заземляющий проводник PE. Последние две соединены с заземлителем силовой подстанции. Применяется для подачи электричества группам однофазных потребителей.
  • TN-C-S. Используется при индивидуальном питании однофазных потребителей от подъездного распределительного щитка. Три линии – фазная, технологический ноль N и защитный проводник PE. Место подключения провода PE – к нейтрали подстанции или к независимому заземляющему контуру – не имеет значения.

Подробнее с системами заземления можно ознакомиться здесь.

Сеть с глухозаземленной нейтралью

Рядовые потребители электрической энергии редко понимают, что источником тока в розетке являются силовые трансформаторы. При соединении трёхфазных обмоток трансформатора в «звезду» появляется совместная точка. Нейтраль – так она называется. При соединении нейтрали с контуром заземления непосредственно у источника появляется глухозаземленная нейтраль.

Наибольшая область применения систем с глухозаземленной нейтралью – напряжение до 1000 Вольт (так называемое низкое напряжение). Электрические сети городов и посёлков, дачные домики и элитные коттеджи – все они запитываются от силовых трансформаторов с заземлѐнной нейтралью.

Особенности конструктива

Конструктивной особенностью глухозаземленной нейтрали является наличие фазного и линейного напряжения. Источники электрической энергии, используемые в рассматриваемых электроустановках, обладают тремя силовыми: фазными концами и одним нейтральным – нулевым. Разность потенциалов, появляющаяся между фазными проводами, называется линейным напряжением, а между одним из фазных и нулевым – фазным.

По величине показателя линейного напряжения говорят о напряжении всей электросети. В нашей стране оно зафиксировано на значениях, равных 220В, 380В и 660В.

√3 раз – такова разница между фазным и линейным напряжением. Соответственно, фазное напряжение будет принимать вид 127 В, 220 В и 380 В. Самое распространённая величина номинального напряжения – 380 В. При линейном напряжении 380 В фазное равно 220 В.

Электрическую сеть с нейтралью, заземлённой непосредственно рядом с источником, можно использовать для электроснабжения трехфазных нагрузок на напряжение 380 В и однофазных на напряжение 220 В. Для последних подключение производится между «фазой» и «нулём». Распределение однофазных потребителей производят равномерно по фазам А, В и С во избежание перекоса.

Контур заземления ТП

Любая трансформаторная подстанция с действующим трансформатором обязана быть окружена контуром заземления. Контур заземления трансформаторной подстанции – это таким образом соединённые между собой металлические заземлители, заглублённые в грунт, чтобы сопротивление их не превышало 4-х Ом при номинальном напряжении 380 В. Это значение закреплено в главном нормативном документе электротехники – ПУЭ.

От контура заземления подстанции делаются выводы для присоединения в распределительном устройстве к специальной металлической полосе – нулевой шине. К ней же подключается нулевой вывод трансформатора. У отходящих кабельных линий соответствующие жилы так же заводятся на эту шину. Фазные жилы «сажаются» на коммутационные аппараты.

Кабели, выходящие из кабельного полуэтажа подстанции, должны быть четырёхжильными. В давно введённых в эксплуатацию электроустановках встречаются кабели с тремя жилами и оболочкой из алюминия. В этом случае она используется как нулевой проводник.

Для принятия напряжения от сетевой организации каждый потребитель обязан организовать у себя на объекте вводное распределительное устройство 0,4 кВ (ВРУ). В нем необходимо предусмотреть нулевую шину соответствующего сечения. К ней присоединяются все нулевые жилы подходящих и отходящих кабелей. Повторное заземление ВРУ тоже заводится на нулевую шину.

Эффективно заземленная нейтраль

При эффективном и глухо заземлении нейтрали всякое замыкание одной фазы является однофазным КЗ, сопровождающимся значительным током через место повреждения, и должно привести к срабатыванию защитных устройств, отключающих поврежденный участок от системы. На мощных подстанциях токи замыкания на землю могут достигать десятков килоампер. Чтобы частые отключения линий из-за замыканий на землю не нарушали надежности питания потребителей, на таких линиях применяют однофазное или трехфазное автоматическое  повторное включение (АПВ).

Наибольшее распространение среди систем высокого напряжения получили системы с эффективно заземленными нейтралями. У таких систем нейтрали трансформаторов и автотрансформаторов заземлены наглухо или через реакторы с небольшим индуктивным сопротивлением с таким расчетом, чтобы при замыкании напряжения неповрежденных фаз относительно земли не превышали 1,4 Uф, а однофазный ток КЗ в любой точке системы был не менее 60 % тока трехфазного КЗ в той же точке. В системах с эффективно заземленной нейтралью кратность внутренних перенапряжений (k = Uвн / Uф) в момент замыкания не превышает 2,5.

Системы с эффективно и глухозаземленной нейтралью относят к системам с большими токами замыкания на землю (Iз > 500 А).

Для ограничения токов замыкания на землю искусственно увеличивают сопротивление нулевой  последовательности Zо за счет заземления только части нейтралей трансформаторов (одного или двух) на подстанции или заземления нейтралей через сопротивления. Однако такое увеличение приводит к дополнительному повышению напряжения на неповрежденных фазах при несимметрии КЗ.

Рассмотрим систему с глухозаземленной нейтралью при однофазном замыкании на землю фазы (рисунок а)). В этом случае напряжения на неповрежденных фазах определяют из выражений:

Ub’ = — ((3*Zо + j√3*(Zо + 2*Z2) / (2*(Z1+Z2+Zо)) * Еэ;

Uc’ = — ((3*Zо — j√3*(Zо + 2*Z2) / (2*(Z1+Z2+Zо)) * Еэ,

где Еэ — ЭДС эквивалентного генератора, численно равная напряжению в месте КЗ перед его возникновением.

Ток однофазного замыкания определяется суммой токов прямой, обратной и нулевой последовательностей, то есть:

Iз = Ia1+Ia2+Iaо = 3*Ia1,

где Ia1 = Ia2 = Iaо

На рисунке б) представлена векторная диаграмма при КЗ фазы L1 для системы с индуктивными сопротивлениями.

Векторная диаграмма получается симметричной, поскольку IUc’I = IUb’I, а концы векторов Uc’ и Ub’ скользят по прямым, параллельным вектору Uл.

Внутренние перенапряжения в системе зависят от числа заземленных нейтралей трансформаторов. Чем больше это число, тем меньше значения перенапряжений. Однако заземление большого количества нейтралей приводит к значительному увеличению тока однофазного КЗ. Поэтому, например, в системах напряжением 110 В заземляют столько нейтралей трансформаторов, сколько необходимо для создания эффективного режима работы нейтрали в системе. Иногда для уменьшения однофазного тока КЗ нейтрали трансформаторов заземляют через активное или индуктивное сопротивление. При заземлении нейтрали через индуктивное сопротивление ток в месте повреждения будет значительно больше емкостного тока замыкания на землю, но не более допустимых значений, ограниченных появлением устойчивого дугового замыкания на землю. Такое заземление нейтрали повышает устойчивость системы при однофазных замыканиях на землю и ограничивает коммутационные перенапряжения до допустимых пределов.

При заземлении нейтрали через активное сопротивление ток в месте повреждения будет больше емкостного тока замыкания на землю, но меньше, чем при заземлении нейтрали через индуктивное сопротивление. Напряжения на неповрежденных фазах при этом достигают значений (1,73 — 1,9) Uф. При правильно выбранном значении активного сопротивления устойчивость системы при однофазных замыканиях выше, чем при глухом заземлении нейтрали. Надежность заземления нейтрали через активное сопротивление выше, чем через индуктивное. Однако введение в нейтраль индуктивного сопротивления (реактора) для ограничения тока однофазного  КЗ является более экономичным, чем заземление нейтрали через активное сопротивление. Последнее находит применение при заземлении нейтралей генераторов.

Зануление: назначение и характеристики

Зануление вместо заземления часто используется в квартирах, где отсутствует традиционная система заземления или она имеет устаревший вид. Такой тип защиты подразумевает соединение металлических деталей, не проводящих ток с глухозаземленным нулевым проводником. Устроен этот механизм для того, чтобы на момент повреждения изоляции и выхода тока на корпус приборов, осуществлялось короткое замыкание, вследствие чего происходило срабатывание автоматических выключателей и УЗО.

Важно! Практикуя вместо заземления зануление — обязательно устанавливайте автоматы и устройства защитного отключения. Следует внимательно и регулярно проверять провод нейтрали, так как в случае выхода высокого тока, под напряжением оказываются все приборы, на которые выполнено зануление

Эта ситуация объясняется автоматическим переключением зануленных приспособлений к фазе. Поэтому в целях безопасности не рекомендуется подключать к нулю автоматы и другие средства защиты. Тем не менее, полностью обезопасить себя от удара током, можно лишь установив повторные заземлители на каждые 200 м электрической сети

Следует внимательно и регулярно проверять провод нейтрали, так как в случае выхода высокого тока, под напряжением оказываются все приборы, на которые выполнено зануление. Эта ситуация объясняется автоматическим переключением зануленных приспособлений к фазе. Поэтому в целях безопасности не рекомендуется подключать к нулю автоматы и другие средства защиты. Тем не менее, полностью обезопасить себя от удара током, можно лишь установив повторные заземлители на каждые 200 м электрической сети.

Устройство сетей с голухозаземленной нейтралью

Как видно из рисунка 2, характерной особенностью электросетей TN типа является заземление нейтрали. Заметим, что в данном случае речь идет не о защитном заземлении, а о рабочем соединении между нейтралью и заземляющим контуром. Согласно действующим нормам, максимальное сопротивление такого соединения – 4-е Ома (для сетей 0,4 кВ). При этом нулевой провод, идущий от глухозаземленной средней точки, должен сохранять свою целостность, то есть, не коммутироваться и не оборудоваться защитными устройствами, например, предохранителями или автоматическими выключателями.

В ВЛ до 1-го кВ, используемых в системах с глухозаземленной нейтралью, нулевые провода прокладываются на опорах, как и фазные. В местах, где делается отвод от ЛЭП, а также через каждые 200,0 метров магистрали, положено повторно заземлять нулевые линии.

Пример устройства сети TN-C-S

Если от трансформаторных подстанций отводятся кабели к потребителю, то при использовании схемы с глухозаземленной нейтралью, длина такой магистрали не может превышать 200,0 метров. На вводных РУ также следует подключать шину РЕ к контуру заземления, что касается нулевого провода, то необходимость в его подключении к «земле» зависит от схемы исполнения.

Принцип работы глухозаземленной нейтрали

Сначала необходимо понять, что является определением понятия глухозаземленная нейтраль. Согласно ПУЭ этот способ предполагает прямое соединение нейтрали трансформатора с заземляющим элементом. В электротехнике такой способ заземления принято называть рабочим. Также необходимо помнить, что в электроустановках, рассчитанных на напряжение 220−380 вольт, сопротивление заземляющих элементов не должно превышать показатель в 4 Ом.

Принцип действия глухозаземленной нейтрали можно продемонстрировать на примере трехпроводной электроцепи, соединяющей источник энергии с жилым домом. При ее создании нейтраль просто распределяется по щитку, и к ней подключаются все заземляющие контуры потребителей. Такая цепь не предполагает наличия различных устройств, которые могут нарушить ее единство.

Если предположить, что по причине частых вибраций в холодильнике от места крепления отсоединился фазный проводник и вступил в контакт с корпусом, то такая ситуация является аварийной. Все это приводит к появлению короткого замыкания и стремительному увеличению силы тока. Однако автоматический выключатель быстро справляется с поставленной задачей и размыкает цепь. Если человек случайно дотронется до провода, то поражения током не произойдет, ведь сопротивление R0 будет меньше в сравнении с возникающим при прохождении через человеческое тело.

Плюсы и минусы способа

Глухозаземленная нейтраль имеет больше преимуществ и меньше недостатков в сравнении с изолированной. Среди преимуществ можно отметить:

  • Появляется возможность использовать оборудование с таким уровнем изоляции, который был изначально запланирован.
  • Отпадает необходимость в использовании специальных защитных схем.
  • Эффективно справляется с подавлением перенапряжения.

Через низкоомное сопротивление

Заземление нейтрали с помощью небольшого по номинальной величине резистора широко практикуется лишь в нескольких странах (в России и Белоруссии, в частности). При этом более логичным кажется использование в этих цепях высокоомного резистора (RB-режим), обеспечивающего низкий уровень перенапряжений в режиме ОЗЗ.

Другие типы заземления нейтрали предполагают использование комбинированных вариантов её подключения с использованием индуктивности (LB плюс RB-режимы).

Но при внимательном исследовании этих подходов выясняется, что высокоомные резисторы отличаются не только значительными габаритами, но и имеют приличную массу и стоимость. Рассмотренный выше вариант установки дугогасящих реакторов также имеет свои особенности и характерные для него недостатки.

Вследствие этого перед выбором режима с низкоомным резистором должны быть проведены всесторонние исследования и расчёты, учитывающие все указанные выше факторы.

Известны два способа реализации низкоомного заземления, один из которых предполагает установку в этих цепях резистивного элемента, обеспечивающего срабатывание защиты по току при ОЗЗ. При втором подходе используется заземлённые через индуктивность схемы, рассчитанные на защиту от двойных фазных замыканий.

Резистивный вариант учитывает дополнительные токовые составляющие в нейтрали, превышающие ёмкостные значения ОЗЗ приблизительно в 3 и более раз. В схемах с реактивным (индуктивным) заземлением уровень этих составляющих не должен превышать суммы значений токов срабатывания от двойных замыканий и ёмкостного КЗ при ОЗЗ.

Отметим также, что согласно ПУЭ рассматриваемые режимы работы принято делить на кратковременные и длительные. В последнем случае элементы заземления размещаются в цепочке соединения с нейтралью на постоянной основе. Использование этого способа подключения в соответствии с требованиями безопасности допускается лишь при достаточно качественном заземлении (RЗ ≤ 0,5 Ома), что нецелесообразно как по экономическим соображениям, так и по трудовым затратам.

Особенности заземляющего устройства

Основной целью заземляющего контура является понижение потенциала при пробое на корпус и коротком замыкании, до безопасного значения.

При этом, на корпусе оборудования понижается напряжение и сила тока, до безопасного уровня. На производстве заземляют корпуса электрооборудования, зданий и помещений от воздействия атмосферных токов.

При монтаже контура, в сети трехфазного тока не более 1000 В, применяют изолированную нейтраль. При больших уровнях напряжения сети, монтируется система с разными режимами нейтрали.

Контур заземления – это целая система, включающая в себя:

  • заземлитель;
  • заземляющие горизонтальные проводники;
  • подводящие провода.

Заземлитель подразделяют на искусственный и естественный.

При возможности следует использовать естественный заземлитель:

  • подземные трубопроводы водоснабжения. Но в этом случае, необходимо оборудовать трубопровод защитой от блуждающих токов;
  • подключаются на металлоконструкции цехов и помещений;
  • стальная или медная оплетка кабеля;
  • трубопроводы в скважине.

По нормам ПУЭ запрещено подключать заземляющий контур на трубы отопления и с пожароопасными материалами.

При искусственном оснащении, заземляемое оборудование предохраняется путем изготовления контура в виде равностороннего треугольника из металлических штырей или уголков.

Для щелочной и кислой почвы, рекомендуется использовать медный, оцинкованный заземлитель. Для изготовления контура в виде треугольника, необходимо углубиться в землю на 70 см.

Корпуса каждого прибора должны обязательно подключаться к системе защиты. При этом, нельзя подключать несколько потребителей последовательно, каждое устройство обязано обустраиваться линией подключения.

Теперь о главном – значение уровня сопротивления контура. В него суммируется сопротивления каждого прибора цепи и его проводов.

При расчете сопротивления контура, следует учитывать уровень значения грунта, размеры и глубину забивания заземлителей. Необходимо учитывать температурные особенности региона обустройства контура.

Помните – при жаркой погоде, место установки следует заливать водой, почва при высыхании меняет уровень сопротивления.

При обслуживании сетей до 1000. В и мощности оборудования свыше 100 кВА – сопротивление контура не более 10 Ом. В бытовых сетях оптимальным значением будет 4 Ома. Напряжение при прикосновении должно быть меньше 40 В. Сети свыше 1000 В защищаются устройством с сопротивлением не более 1 Ома.

Это некоторые особенности и принцип действия заземления. Более подробно, вы можете ознакомиться в статьях по этой теме на сайте.

Системы TN и её подсистемы

Начнем с аббревиатуры. Первые две буквы характеризуют вариант исполнения заземления для нейтрали и ОПЧ соответственно. Варианты для первой литеры:

  • T (от англ. terra – земля) – обозначает глухозаземленную нейтраль.
  • I (от англ. isolate – изолировать) – указывает, что соединение с «землей» отсутствует.

Варианты вторых литер говорят об исполнении заземления ОПЧ: N или Т, используется глухозаземленная нейтраль или независимый контур, соответственно.

Сейчас практикуется три схемы нейтрали:

  1. Эффективное заземление обозначается, как ТТ. Особенность такой схемы заключается в том, что глухозаземленный вывод (N)считается рабочим проводом, а для защиты используется собственный заземляющий проводник (РЕ). Схема заземления ТТ
  2. Изолированная нейтраль (принятое обозначение IT), схема системы была представлена выше на рис. 6.
  3. Вариант TN (глухозаземленное исполнение).

У последнего варианта исполнения есть три подвида:

  • Совмещенный вариант, принятое обозначение TN-С. У данного подвида защитный нуль соединен с нейтральным проводом, что не обеспечивает должного уровня электробезопасности. При обрыве РЕ+N защитное зануление становится бесполезным. Это основная причина, по которой от системы TN-C постепенно отказываются. Схема заземления TN-С
  • Вариант TN-S, нулевой и защитный проводники проложены раздельно. Такая схема наиболее безопасна, но для нее требуется использовать не 4-х, а 5-ти жильный кабель, что повышает стоимость реализации. Схема заземления TN-S
  • Подсистема, совмещающая в себе два предыдущих варианта – TN-C-S. От подстанции до ввода потребителя идет один провод, в РУ он подключается к шинам PE, N и заземляющему контуру. Такая подсистема заземленной нейтрали сейчас наиболее распространена. Схема заземления TN-C-S

Системы с глухозаземленной нейтралью системы заземления TN

К таким системам относятся:

  • TN-C;
  • TN-S;
  • TNC-S;
  • TT.

Согласно п. 1.7.3 ПУЭ TN-система — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников.

TN включает в себя такие элементы, как:

  • заземлитель средней точки, которая относится к источнику питания;
  • внешние проводящие части устройства;
  • проводник нейтрального типа;
  • совмещенные проводники.

Нейтраль источника глухо заземлена, а внешние проводники установки подключены к глухозаземленной средней точке источника при помощи проводников защитного типа.

Сделать заземляющий контур можно только в электроустановках, мощность которых не превышает 1 кВ.

Система TN-C

В данной системе нулевой защитный и нулевой рабочий проводники, объединены в один PEN проводник. Они совмещены на всем протяжении системы. Полное название — Terre-Neutre-Combine.

Среди преимуществ TN-C можно выделить только легкий монтаж системы, который не требует больших усилий и денежных затрат. Для монтажа не требуется улучшение уже установленных кабельных и воздушных линий электропередачи, у которых есть всего 4 проводящих устройства.

Недостатки:

  • возрастает вероятность получения удара током;
  • возможно появление линейного напряжения на корпусе электрической установки во время обрыва электрической цепи;
  • высокая вероятность потери заземляющей цепи в случае повреждения проводящего устройства;
  • такая система защищает только от короткого замыкания.

Система TN-S

Особенность системы заключается в том, что электричество поставляется к потребителям через 5 проводников в трехфазной сети и через 3 проводника в однофазной сети.

Всего от сети отходит 5 проводящих источников, 3 из которых выполняют функцию силовой фазы, а оставшиеся 2 — это нейтральные проводники, подсоединенные к нулевой точке.

Конструкция:

  1. PN — нейтральный механизм, который задействован в схеме электрического оборудования.
  2. PE — глухозаземленный проводник, выполняющий защитную функцию.

Преимущества:

  • легкость монтажа;
  • низкая стоимость покупки и содержания системы;
  • высокая степень электробезопасности;
  • не требуется создание контура;
  • возможность использовать систему в качестве устройства от защиты утечки тока.

Система TN-C-S

TN-C-S система предполагает разделение проводника PEN на PE и N в каком-то участке цепи. Обычно разделение происходит в щитке в доме, а до этого они совмещены.

Достоинства:

  • простое устройство защитного механизма от попадания молний;
  • наличие защиты от короткого замыкания.

Минусы использования:

  • слабый уровень защиты от сгорания нулевого проводника;
  • возможность появления фазного напряжения;
  • высокая стоимость монтажа и содержания;
  • напряжение не может быть отключено автоматикой;
  • отсутствует защита от тока на открытом воздухе.

Система TT

TT разработана для обеспечения высокого уровня безопасности. Устанавливается на электростанциях с низким уровнем технического состояния, например, где используются оголенные провода, электроустановки, которые расположены на открытом воздухе или закреплены на опорах.

TT монтируется по схеме четырех проводников:

  • 3 фазы, подающие напряжение, смещаются под углом 120° между собой;
  • 1 общий ноль выполняет совмещенные функции рабочего и защитного проводника.

Преимущества TT:

  • высокий уровень устойчивости к деформации провода, ведущего к потребителю;
  • защита от КЗ;
  • возможность использования на электроустановках высокого напряжения.

Недостатки:

  • сложное устройство защиты от молний;
  • невозможность отследить фазы короткого замыкания электрической цепи.

Принцип действия

Работа защитного зануления и защитного заземления отличаются тем, что при занулении, если на корпусе оборудования появляется опасный потенциал, то может случиться короткое замыкание. Под действием тока короткого замыкания в несколько раз большего по значению, чем номинальный ток сети, срабатывает предохранитель или другой защитный аппарат. При защитном заземлении поражающее действие электрического тока нейтрализуется снижением величины напряжения прикосновения (и напряжения шага) до безопасного значения. Поврежденный бытовой электроприбор или электрооборудование, не имеющие защитных зануления или заземления, могут долгое время находиться под напряжением и стать опасными для человека в момент касания или при приближении к оборудованию на опасное расстояние.

Как сказано выше, при попадании фазы на корпус прибора, который выполнен из металла и соединен с нулевым защитным проводником, происходит короткое замыкание. Величина тока короткого замыкания больше в несколько раз величины номинального тока. Под его воздействием срабатывают аппараты защиты. Вследствие этого отключаются электрические линии, подключенные через защитный аппарат.

Площадь сечения проводников следует выбирать исходя из требований соответствующих глав ПУЭ. Для защитных проводников ПУЭ (п. 1.7.5) определяет зависимость их сечения от сечения фазных проводников. Так для площадей сечений проводников фазы, меньших 16 мм2, размер площади сечения защитного проводника равен площади сечения защитного проводника. Если площадь сечения фазного проводника находится в диапазоне от 16 до 35 мм2, то площадь сечения защитного проводника равна 16 мм2 и если площадь сечения фазного проводника больше 35 мм2, то площадь защитного проводника выбирается в 2 раза меньше. Также площадь сечения можно рассчитать самостоятельно на основании этого же пункта ПУЭ. Главное условие выбора — обеспечить быстродействие, которое рассчитывается по формуле:

S≥ I*√t/k,

В этой формуле отражена прямая зависимость значения площади поперечного сечения защитного проводника (S) от значения тока короткого замыкания, при котором обеспечивается быстродействие защитных аппаратов в соответствии с табл.1.7.1 ПУЭ и 1.7.2 ПУЭ или за время не более 5 с в соответствии с 1.7.79 ПУЭ и значения времени срабатывания защитного аппарата (t). Обратная зависимость от значения коэффициента, который определяется материалом защитного проводника, его изоляции, начальной и конечной температурами проводника. Значение k для защитных проводников в различных условиях даны в табл.1.7.6-1.7.9 ПУЭ.

Схема ниже повторяет ранее указанный принцип действия и применение системы защитного зануления.

Назначение такого устройства обеспечить быстрое отключение неисправного электрооборудования от электропитания, тем самым нейтрализовать поражающее действие электрического тока при касании человеком неисправного прибора.

Схема работы системы зануления в случае пробоя изоляции, изображена ниже:

Узнать, в чем разница между занулением и заземлением, вы можете из нашей статьи!

Сети с глухозаземленными нейтралями

Такие сети применяются на напряжение до 1 кВ для одновременного питания трехфазных и однофазных нагрузок, включаемых на фазные напряжения (рис.7). В них нейтраль трансформатора или генератора присоединяется к заземляющему устройству непосредственно или через малое сопротивление (например, через трансформатор тока). Для фиксации фазного напряжения при наличии однофазных нагрузок применяют нулевой проводник, связанный с нейтралью трансформатора (генератора). Этот проводник служит для выполнения также и функции зануления, т.е. к нему преднамеренно присоединяют металлические части электроустановок, нормально не находящиеся под напряжением.

При наличии зануления пробой изоляции на корпус вызовет однофазное КЗ и срабатывание защиты с отключением установки от сети. При отсутствии зануления корпуса (второй двигатель на рис.7) повреждение изоляции вызовет опасный потенциал на корпусе. Целость нулевого проводника нужно контролировать, так как его случайный разрыв может вызвать перекос напряжений по фазам (снижение его на загруженных фазах и повышение на незагруженных). Может быть принято при необходимости раздельное выполнение нулевого защитного и нулевого рабочего проводников.

Рис.7. Трехфазная сеть с глухозаземленной нейтралью

Требования ПУЭ

Сегодня в электротехнике достаточно активно используются оба способа — глухозаземленная и изолированная нейтраль. Различия между ними в первую очередь заключаются в способе подключения трансформатора к заземляющему элементу. Вся необходимая информация по выбору способа защиты изложена в ПУЭ.

Если говорить о бытовой сети на 220 вольт, то место заземления можно расположить около трансформатора, и для решения поставленной задачи применяется отдельный проводник. Это позволит уменьшить путь прохождения тока и одновременно сократить расходы. В загородном доме допускается соединение с металлическим каркасом строения, расположенным в глубине земли.

Практические советы

При строительстве частного дома заземление является обязательным условием

При полной или частичной замене, модернизации или ремонте проводки в квартире или загородном доме важно не пренебрегать правилами личной безопасности. Несколько практических советов:

  • Если установлена двухпроводная электрическая сеть, при установке трехпроводной розетки нельзя соединять заземляющий контур и рабочий ноль. Это нарушение одного из основных правил безопасности. Если пренебречь им, корпус бытового прибора, подключенного к сети, всегда будет под напряжением, что отрицательно сказывается на производительности и эксплуатационном сроке, а также несет опасность жизни и здоровью человека и домашних питомцев.
  • Во время строительства дачи или загородного дома установка заземления – обязательное условие эксплуатации электричества. Недорогая, имеющая простую конструкцию заземляющая система сбережет здоровье людей и целостность всей дорогостоящей бытовой техники, электротехнических приборов.
  • Для обеспечения электроэнергией мощных бытовых приборов, например, стиральной или посудомоечной машины, бойлера, в помещении рекомендуется проводить отдельную магистраль электропроводки. Обусловлено это тем, что при одновременном запуске этих приборов датчики УЗО (устройства защитного отключения) и предохранительные датчики будут часто срабатывать, отключая полностью подачу ресурса на квартиру или дом.

Устройство защитного отключения – это защита человека и домашних питомцев, прибор быстрого срабатывания. Автомат – это электротехнический прибор, который улавливает изменение параметров электрической сети, в частности ее перегрузку. Его основной недостаток – может сработать не сразу, а по истечении определенного времени. Чтобы совместить возможности двух защитных приборов и нивелировать их недостатки, был разработан гибридный прибор – дифавтомат.